Mitigating Hallucinations in YOLO-based Object Detection Models: A Revisit to Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2503.07330v1
- Date: Mon, 10 Mar 2025 13:42:41 GMT
- Title: Mitigating Hallucinations in YOLO-based Object Detection Models: A Revisit to Out-of-Distribution Detection
- Authors: Weicheng He, Changshun Wu, Chih-Hong Cheng, Xiaowei Huang, Saddek Bensalem,
- Abstract summary: This paper studies the underlying reasons for performance bottlenecks and proposes a methodology to improve performance fundamentally.<n>By developing a methodology to carefully synthesize an OoD dataset that semantically resembles the objects to be detected, we achieve a 88% reduction in overall hallucination error.
- Score: 8.206992765692535
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Object detection systems must reliably perceive objects of interest without being overly confident to ensure safe decision-making in dynamic environments. Filtering techniques based on out-of-distribution (OoD) detection are commonly added as an extra safeguard to filter hallucinations caused by overconfidence in novel objects. Nevertheless, evaluating YOLO-family detectors and their filters under existing OoD benchmarks often leads to unsatisfactory performance. This paper studies the underlying reasons for performance bottlenecks and proposes a methodology to improve performance fundamentally. Our first contribution is a calibration of all existing evaluation results: Although images in existing OoD benchmark datasets are claimed not to have objects within in-distribution (ID) classes (i.e., categories defined in the training dataset), around 13% of objects detected by the object detector are actually ID objects. Dually, the ID dataset containing OoD objects can also negatively impact the decision boundary of filters. These ultimately lead to a significantly imprecise performance estimation. Our second contribution is to consider the task of hallucination reduction as a joint pipeline of detectors and filters. By developing a methodology to carefully synthesize an OoD dataset that semantically resembles the objects to be detected, and using the crafted OoD dataset in the fine-tuning of YOLO detectors to suppress the objectness score, we achieve a 88% reduction in overall hallucination error with a combined fine-tuned detection and filtering system on the self-driving benchmark BDD-100K. Our code and dataset are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.
Related papers
- Seamless Detection: Unifying Salient Object Detection and Camouflaged Object Detection [73.85890512959861]
We propose a task-agnostic framework to unify Salient Object Detection (SOD) and Camouflaged Object Detection (COD)<n>We design a simple yet effective contextual decoder involving the interval-layer and global context, which achieves an inference speed of 67 fps.<n> Experiments on public SOD and COD datasets demonstrate the superiority of our proposed framework in both supervised and unsupervised settings.
arXiv Detail & Related papers (2024-12-22T03:25:43Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.<n>Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.<n>We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - On the Inherent Robustness of One-Stage Object Detection against Out-of-Distribution Data [6.267143531261792]
We propose a novel detection algorithm for detecting unknown objects in image data.<n>It exploits supervised dimensionality reduction techniques to mitigate the effects of the curse of dimensionality on the features extracted by the model.<n>It utilizes high-resolution feature maps to identify potential unknown objects in an unsupervised fashion.
arXiv Detail & Related papers (2024-11-07T10:15:25Z) - Revisiting Out-of-Distribution Detection in LiDAR-based 3D Object Detection [12.633311483061647]
Out-of-distribution (OOD) objects can lead to misclassifications, posing a significant risk to the safety and reliability of automated vehicles.
We propose a new evaluation protocol that allows the use of existing datasets without modifying the point cloud.
The effectiveness of our method is validated through experiments on the newly proposed nuScenes OOD benchmark.
arXiv Detail & Related papers (2024-04-24T13:48:38Z) - Sparse Semi-DETR: Sparse Learnable Queries for Semi-Supervised Object Detection [12.417754433715903]
We introduce Sparse Semi-DETR, a novel transformer-based, end-to-end semi-supervised object detection solution.
Sparse Semi-DETR incorporates a Query Refinement Module to enhance the quality of object queries, significantly improving detection capabilities for small and partially obscured objects.
On the MS-COCO and Pascal VOC object detection benchmarks, Sparse Semi-DETR achieves a significant improvement over current state-of-the-art methods.
arXiv Detail & Related papers (2024-04-02T10:22:23Z) - Object-Centric Multiple Object Tracking [124.30650395969126]
This paper proposes a video object-centric model for multiple-object tracking pipelines.
It consists of an index-merge module that adapts the object-centric slots into detection outputs and an object memory module.
Benefited from object-centric learning, we only require sparse detection labels for object localization and feature binding.
arXiv Detail & Related papers (2023-09-01T03:34:12Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
We propose a saliency-based OD algorithm (SalienDet) to detect unknown objects.
Our SalienDet utilizes a saliency-based algorithm to enhance image features for object proposal generation.
We design a dataset relabeling approach to differentiate the unknown objects from all objects in training sample set to achieve Open-World Detection.
arXiv Detail & Related papers (2023-05-11T16:19:44Z) - A Tri-Layer Plugin to Improve Occluded Detection [100.99802831241583]
We propose a simple '' module for the detection head of two-stage object detectors to improve the recall of partially occluded objects.
The module predicts a tri-layer of segmentation masks for the target object, the occluder and the occludee, and by doing so is able to better predict the mask of the target object.
We also establish a COCO evaluation dataset to measure the recall performance of partially occluded and separated objects.
arXiv Detail & Related papers (2022-10-18T17:59:51Z) - SAFE: Sensitivity-Aware Features for Out-of-Distribution Object
Detection [10.306996649145464]
We show that residual convolutional layers with batch normalisation produce Sensitivity-Aware FEatures (SAFE)
SAFE is consistently powerful for distinguishing in-distribution from out-of-distribution detections.
We extract SAFE vectors for every detected object, and train a multilayer perceptron on the surrogate task of distinguishing adversarially perturbed from clean in-distribution examples.
arXiv Detail & Related papers (2022-08-29T23:57:55Z) - Labels Are Not Perfect: Inferring Spatial Uncertainty in Object
Detection [26.008419879970365]
In this work, we infer the uncertainty in bounding box labels from LiDAR point clouds based on a generative model.
Comprehensive experiments show that the proposed model reflects complex environmental noises in LiDAR perception and the label quality.
We propose Jaccard IoU as a new evaluation metric that extends IoU by incorporating label uncertainty.
arXiv Detail & Related papers (2020-12-18T09:11:44Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
We propose SESS, a self-ensembling semi-supervised 3D object detection framework. Specifically, we design a thorough perturbation scheme to enhance generalization of the network on unlabeled and new unseen data.
Our SESS achieves competitive performance compared to the state-of-the-art fully-supervised method by using only 50% labeled data.
arXiv Detail & Related papers (2019-12-26T08:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.