論文の概要: Certifiably Optimal Anisotropic Rotation Averaging
- arxiv url: http://arxiv.org/abs/2503.07353v1
- Date: Mon, 10 Mar 2025 14:09:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:47:43.133093
- Title: Certifiably Optimal Anisotropic Rotation Averaging
- Title(参考訳): 最適異方性回転平均化
- Authors: Carl Olsson, Yaroslava Lochman, Johan Malmport, Christopher Zach,
- Abstract要約: 最適回転平均化に異方性コストをどう組み込むかを示す。
また、異方性を考慮した既存の解法が、異方性の設定で失敗することを示す。
- 参考スコア(独自算出の注目度): 16.120653022942083
- License:
- Abstract: Rotation averaging is a key subproblem in applications of computer vision and robotics. Many methods for solving this problem exist, and there are also several theoretical results analyzing difficulty and optimality. However, one aspect that most of these have in common is a focus on the isotropic setting, where the intrinsic uncertainties in the measurements are not fully incorporated into the resulting optimization task. Recent empirical results suggest that moving to an anisotropic framework, where these uncertainties are explicitly included, can result in an improvement of solution quality. However, global optimization for rotation averaging has remained a challenge in this scenario. In this paper we show how anisotropic costs can be incorporated in certifiably optimal rotation averaging. We also demonstrate how existing solvers, designed for isotropic situations, fail in the anisotropic setting. Finally, we propose a stronger relaxation and show empirically that it is able to recover global optima in all tested datasets and leads to a more accurate reconstruction in all but one of the scenes.
- Abstract(参考訳): ローテーション平均化(英: Rotation averaging)は、コンピュータビジョンとロボット工学の応用における重要なサブプロブレムである。
この問題を解決するための多くの方法が存在し、難易度と最適性を分析する理論的な結果もいくつか存在する。
しかし、これらの多くは等方的設定に焦点を合わせており、測定の本質的な不確実性は結果の最適化タスクに完全には組み込まれていない。
最近の実験結果から, これらの不確実性を明示的に含んだ異方性フレームワークへの移行は, 溶液品質の向上をもたらすことが示唆された。
しかし、このシナリオでは、回転平均化のグローバルな最適化が課題となっている。
本稿では, 最適回転平均化に異方性コストを組み込む方法を示す。
また、異方性を考慮した既存の解法が、異方性の設定で失敗することを示す。
最後に、より強い緩和を提案し、テストされた全てのデータセットでグローバルな最適性を回復できることを実証的に示し、シーンの1つを除いて、より正確な再構築を実現する。
関連論文リスト
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - A Guide to Stochastic Optimisation for Large-Scale Inverse Problems [4.926711494319977]
最適化アルゴリズムは、大量のデータを持つ機械学習のデファクトスタンダードです。
各最適化ステップで利用可能なデータのサブセットのみを処理すると、イテレーション毎の計算コストが劇的に削減される。
逆画像問題に対する変分正規化に特有の最適化の可能性と課題に焦点をあてる。
論文 参考訳(メタデータ) (2024-06-10T15:02:30Z) - Debiasing Conditional Stochastic Optimization [15.901623717313493]
本稿では,ポートフォリオ選択や強化学習,堅牢な学習など,さまざまな応用をカバーする条件因果最適化(CSO)問題について検討する。
有限変量変量CSO問題に対する新しいアルゴリズムを開発し、既存の結果を大幅に改善する。
我々は,本手法が他の最適化問題と同様の課題に対処するための有用なツールとなる可能性があると考えている。
論文 参考訳(メタデータ) (2023-04-20T19:19:55Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
AUPRC(Area Under the Precision-Recall Curve)の最適化は、機械学習にとって重要な問題である。
本研究では, AUPRC最適化の単依存一般化における最初の試行について述べる。
3つの画像検索データセットの実験は、我々のフレームワークの有効性と健全性に言及する。
論文 参考訳(メタデータ) (2022-09-27T09:06:37Z) - Scalable Distributional Robustness in a Class of Non Convex Optimization
with Guarantees [7.541571634887807]
分散ロバスト最適化 (DRO) は, サンプルベース問題と同様に, 学習におけるロバスト性を示す。
実世界における課題を解くのに十分ではない混合整数クラスタリングプログラム (MISOCP) を提案する。
論文 参考訳(メタデータ) (2022-05-31T09:07:01Z) - The Probabilistic Normal Epipolar Constraint for Frame-To-Frame Rotation
Optimization under Uncertain Feature Positions [53.478856119297284]
特徴位置における異方性および不均一性を考慮した確率論的正規極性制約(PNEC)を導入する。
合成データの実験において、新しいPNECは元のNECよりも正確な回転推定値が得られることを示した。
我々は,提案手法を最先端のモノクロ回転専用オドメトリーシステムに統合し,実世界のKITTIデータセットに対して一貫した改良を行った。
論文 参考訳(メタデータ) (2022-04-05T14:47:11Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
一般的な問題を解決するための適応アルゴリズムのための普遍的な枠組みを設計することが望まれる。
特に,本フレームワークは,非収束的設定支援の下で適応的手法を提供する。
論文 参考訳(メタデータ) (2021-06-15T15:16:28Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
本稿では,入力に敏感な制約付き最適化問題に対して,差分プライバシーを適用する方法について検討する。
本稿は, 自然仮定の下では, 大規模非線形最適化問題に対して, 双レベルモデルを効率的に解けることを示す。
論文 参考訳(メタデータ) (2020-01-26T20:15:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。