論文の概要: HGO-YOLO: Advancing Anomaly Behavior Detection with Hierarchical Features and Lightweight Optimized Detection
- arxiv url: http://arxiv.org/abs/2503.07371v1
- Date: Mon, 10 Mar 2025 14:29:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:47:40.851985
- Title: HGO-YOLO: Advancing Anomaly Behavior Detection with Hierarchical Features and Lightweight Optimized Detection
- Title(参考訳): HGO-YOLO:階層的特徴による異常行動検出と軽量化検出
- Authors: Qizhi Zheng, Zhongze Luo, Meiyan Guo, Xinzhu Wang, Renqimuge Wu, Qiu Meng, Guanghui Dong,
- Abstract要約: 本研究では,HGNetv2アーキテクチャをYOLOv8に統合したHGO-YOLOを提案する。
評価の結果,提案アルゴリズムはmAP@0.5の87.4%,リコールレート81.1%,モデルサイズは4.6MB,フレームレート56FPSであることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Accurate and real-time object detection is crucial for anomaly behavior detection, especially in scenarios constrained by hardware limitations, where balancing accuracy and speed is essential for enhancing detection performance. This study proposes a model called HGO-YOLO, which integrates the HGNetv2 architecture into YOLOv8. This combination expands the receptive field and captures a wider range of features while simplifying model complexity through GhostConv. We introduced a lightweight detection head, OptiConvDetect, which utilizes parameter sharing to construct the detection head effectively. Evaluation results show that the proposed algorithm achieves a mAP@0.5 of 87.4% and a recall rate of 81.1%, with a model size of only 4.6 MB and a frame rate of 56 FPS on the CPU. HGO-YOLO not only improves accuracy by 3.0% but also reduces computational load by 51.69% (from 8.9 GFLOPs to 4.3 GFLOPs), while increasing the frame rate by a factor of 1.7. Additionally, real-time tests were conducted on Raspberry Pi4 and NVIDIA platforms. These results indicate that the HGO-YOLO model demonstrates superior performance in anomaly behavior detection.
- Abstract(参考訳): 高精度かつリアルタイムなオブジェクト検出は、特にハードウェア制限に制約されたシナリオにおいて、異常な動作の検出には不可欠である。
本研究では,HGNetv2アーキテクチャをYOLOv8に統合したHGO-YOLOを提案する。
この組み合わせは、受信フィールドを拡張し、GhostConvを通じてモデルの複雑さを単純化しながら、幅広い機能をキャプチャする。
我々はパラメータ共有を利用して検出ヘッドを効率的に構築する軽量な検出ヘッドOptiConvDetectを導入した。
評価の結果,提案アルゴリズムはmAP@0.5の87.4%,リコールレート81.1%,モデルサイズは4.6MB,フレームレート56FPSであることがわかった。
HGO-YOLOは精度を3.0%向上するだけでなく、計算負荷を51.69%削減する(8.9 GFLOPから4.3 GFLOPへ)。
さらに、Raspberry Pi4とNVIDIAプラットフォームでリアルタイムテストが行われた。
これらの結果は,HGO-YOLOモデルが異常行動検出において優れた性能を示すことを示している。
関連論文リスト
- LeYOLO, New Scalable and Efficient CNN Architecture for Object Detection [0.0]
FLOPに基づく効率的な物体検出のためのニューラルネットワークアーキテクチャの設計選択に着目する。
そこで本研究では,YOLOモデルの有効性を高めるために,いくつかの最適化手法を提案する。
本稿では、オブジェクト検出のための新しいスケーリングパラダイムと、LeYOLOと呼ばれるYOLO中心のモデルに寄与する。
論文 参考訳(メタデータ) (2024-06-20T12:08:24Z) - YOLO-TLA: An Efficient and Lightweight Small Object Detection Model based on YOLOv5 [19.388112026410045]
YOLO-TLAは、YOLOv5上に構築された高度な物体検出モデルである。
まず、ネックネットワークピラミッドアーキテクチャにおいて、小さなオブジェクトに対する検出層を新たに導入する。
このモジュールはスライディングウィンドウの特徴抽出を使い、計算要求とパラメータ数の両方を効果的に最小化する。
論文 参考訳(メタデータ) (2024-02-22T05:55:17Z) - Fast vehicle detection algorithm based on lightweight YOLO7-tiny [7.7600847187608135]
本稿では, YOLOv7-tiny (You Only Look Once Version 7) に基づく軽量車両検出アルゴリズムGhost-YOLOv7を提案する。
モデル幅を0.5に拡大し、バックボーンネットワークの標準畳み込みをゴースト畳み込みに置き換え、より軽量なネットワークを実現し、検出速度を向上させる。
ゴーストデクルードヘッド (Ghost Deouoled Head, GDH) は、車両の位置と種を正確に予測するために使用される。
論文 参考訳(メタデータ) (2023-04-12T17:28:30Z) - EdgeYOLO: An Edge-Real-Time Object Detector [69.41688769991482]
本稿では, 最先端のYOLOフレームワークをベースとした, 効率的で低複雑さかつアンカーフリーな物体検出器を提案する。
我々は,訓練中の過剰適合を効果的に抑制する拡張データ拡張法を開発し,小型物体の検出精度を向上させるためにハイブリッドランダム損失関数を設計する。
私たちのベースラインモデルは、MS 2017データセットで50.6%のAP50:95と69.8%のAP50、VisDrone 2019-DETデータセットで26.4%のAP50と44.8%のAP50に達し、エッジコンピューティングデバイスNvidia上でリアルタイム要求(FPS>=30)を満たす。
論文 参考訳(メタデータ) (2023-02-15T06:05:14Z) - Light-YOLOv5: A Lightweight Algorithm for Improved YOLOv5 in Complex
Fire Scenarios [8.721557548002737]
本稿では,高速かつ精度のバランスをとる軽量なライトヨロブ5火災検知アルゴリズムを提案する。
実験の結果、Light-YOLOv5は元のアルゴリズムに比べてmAPを3.3%改善し、パラメータ数を27.1%減らし、計算量を19.1%減らし、FPSは91.1に達した。
論文 参考訳(メタデータ) (2022-08-29T08:36:04Z) - ETAD: A Unified Framework for Efficient Temporal Action Detection [70.21104995731085]
時間的行動検出(TAD)のようなトリミングされていないビデオ理解は、しばしば計算資源に対する膨大な需要の苦痛に悩まされる。
我々は、効率的なエンド・ツー・エンドの時間的行動検出(ETAD)のための統合されたフレームワークを構築している。
ETADはTHUMOS-14とActivityNet-1.3の両方で最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-05-14T21:16:21Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices [13.62426382827205]
実時間物体検出器のPP-PicoDetファミリは,モバイルデバイスの物体検出において優れた性能を発揮する。
モデルは、他の一般的なモデルと比較して、精度とレイテンシのトレードオフを改善する。
論文 参考訳(メタデータ) (2021-11-01T12:53:17Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
本稿では,一段検出器の検出パイプラインに対する一連の最適化手法を提案する。
効率的な歩行者検出のための単発アンカーベース検出器(SADet)を形成する。
構造的には単純だが、VGA解像度の画像に対して最先端の結果と20ドルFPSのリアルタイム速度を示す。
論文 参考訳(メタデータ) (2020-07-26T12:32:38Z) - Neural Network Virtual Sensors for Fuel Injection Quantities with
Provable Performance Specifications [71.1911136637719]
証明可能な保証が、他の現実世界の設定にどのように自然に適用できるかを示す。
本研究では, 燃料噴射量を一定範囲で最大化するために, 特定の間隔の燃料噴射量を目標にする方法を示す。
論文 参考訳(メタデータ) (2020-06-30T23:33:17Z) - Highly Efficient Salient Object Detection with 100K Parameters [137.74898755102387]
そこで我々は,段階内および複数ステージのマルチスケール機能を効率的に活用するために,フレキシブルな畳み込みモジュールであるOctoConv(gOctConv)を提案する。
我々は、非常に軽量なモデル、すなわちCSNetを構築し、一般的なオブジェクト検出ベンチマークで、約0.2%(100k)の大規模モデルで同等のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-03-12T07:00:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。