論文の概要: EdgeYOLO: An Edge-Real-Time Object Detector
- arxiv url: http://arxiv.org/abs/2302.07483v1
- Date: Wed, 15 Feb 2023 06:05:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-16 15:42:53.408241
- Title: EdgeYOLO: An Edge-Real-Time Object Detector
- Title(参考訳): EdgeYOLO:Edge-Real-Timeオブジェクト検出器
- Authors: Shihan Liu, Junlin Zha, Jian Sun, Zhuo Li and Gang Wang
- Abstract要約: 本稿では, 最先端のYOLOフレームワークをベースとした, 効率的で低複雑さかつアンカーフリーな物体検出器を提案する。
我々は,訓練中の過剰適合を効果的に抑制する拡張データ拡張法を開発し,小型物体の検出精度を向上させるためにハイブリッドランダム損失関数を設計する。
私たちのベースラインモデルは、MS 2017データセットで50.6%のAP50:95と69.8%のAP50、VisDrone 2019-DETデータセットで26.4%のAP50と44.8%のAP50に達し、エッジコンピューティングデバイスNvidia上でリアルタイム要求(FPS>=30)を満たす。
- 参考スコア(独自算出の注目度): 69.41688769991482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes an efficient, low-complexity and anchor-free object
detector based on the state-of-the-art YOLO framework, which can be implemented
in real time on edge computing platforms. We develop an enhanced data
augmentation method to effectively suppress overfitting during training, and
design a hybrid random loss function to improve the detection accuracy of small
objects. Inspired by FCOS, a lighter and more efficient decoupled head is
proposed, and its inference speed can be improved with little loss of
precision. Our baseline model can reach the accuracy of 50.6% AP50:95 and 69.8%
AP50 in MS COCO2017 dataset, 26.4% AP50:95 and 44.8% AP50 in VisDrone2019-DET
dataset, and it meets real-time requirements (FPS>=30) on edge-computing device
Nvidia Jetson AGX Xavier. We also designed lighter models with less parameters
for edge computing devices with lower computing power, which also show better
performances. Our source code, hyper-parameters and model weights are all
available at https://github.com/LSH9832/edgeyolo.
- Abstract(参考訳): 本稿では,最先端コンピューティングプラットフォーム上でリアルタイムに実装可能な,最先端のYOLOフレームワークに基づく,効率的で低複雑さかつアンカーフリーなオブジェクト検出器を提案する。
学習中の過剰フィッティングを効果的に抑制する拡張データ拡張法を開発し,小型物体の検出精度を向上させるためにハイブリッドランダム損失関数を設計した。
FCOSにインスパイアされたより軽量で効率の良い疎結合ヘッドが提案され、精度を損なうことなく推論速度を向上することができる。
我々のベースラインモデルは、MS COCO2017データセットで50.6%のAP50:95と69.8%のAP50、VisDrone2019-DETデータセットで26.4%のAP50と44.8%のAP50に達し、エッジコンピューティングデバイスNvidia Jetson AGX Xavier上でリアルタイム要求(FPS>=30)を満たす。
また、コンピューティングパワーの低いエッジコンピューティングデバイスのパラメータが少ない軽量モデルも設計し、パフォーマンスも向上しました。
当社のソースコード、ハイパーパラメータ、モデルウェイトはすべて、https://github.com/lsh9832/edgeyoloで利用可能です。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - LeYOLO, New Scalable and Efficient CNN Architecture for Object Detection [0.0]
FLOPに基づく効率的な物体検出のためのニューラルネットワークアーキテクチャの設計選択に着目する。
そこで本研究では,YOLOモデルの有効性を高めるために,いくつかの最適化手法を提案する。
本稿では、オブジェクト検出のための新しいスケーリングパラダイムと、LeYOLOと呼ばれるYOLO中心のモデルに寄与する。
論文 参考訳(メタデータ) (2024-06-20T12:08:24Z) - DAMO-YOLO : A Report on Real-Time Object Detection Design [19.06518351354291]
本稿では,最新のYOLOシリーズよりも高速かつ高精度なオブジェクト検出手法であるDAMO-YOLOを提案する。
我々は最大エントロピーの原理で導かれるMAE-NASを用いて検出バックボーンを探索する。
「首と首のデザインでは、大首と小首の規則に従っている。」
論文 参考訳(メタデータ) (2022-11-23T17:59:12Z) - FasterX: Real-Time Object Detection Based on Edge GPUs for UAV
Applications [16.51060054575739]
我々は,エッジGPU上でのリアルタイム物体検出のためのYOLOXモデルに基づく,FasterXという新しい軽量ディープラーニングアーキテクチャを提案する。
まず,YOLOXのオリジナルヘッドを代替し,小型物体のより優れた検出を行うために,有効で軽量なPixSFヘッドを設計する。
次に、SlimFPNと呼ばれるネック層のスリム構造を開発し、精度と速度のトレードオフであるネットワークのパラメータを低減する。
論文 参考訳(メタデータ) (2022-09-07T13:52:25Z) - Rethinking Deconvolution for 2D Human Pose Estimation Light yet Accurate
Model for Real-time Edge Computing [0.0]
このシステムは精度が高く、SOTA HRNet 256x192の94.5%の精度を達成した。
我々のモデルはエンコーダ・デコーダアーキテクチャを採用し、その効率を改善するために注意深く縮小されている。
論文 参考訳(メタデータ) (2021-11-08T01:44:46Z) - PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices [13.62426382827205]
実時間物体検出器のPP-PicoDetファミリは,モバイルデバイスの物体検出において優れた性能を発揮する。
モデルは、他の一般的なモデルと比較して、精度とレイテンシのトレードオフを改善する。
論文 参考訳(メタデータ) (2021-11-01T12:53:17Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
ディセンス光学フロー推定は、多くのロボットビジョンタスクで重要な役割を果たしています。
現在のネットワークはしばしば多くのパラメータを占有し、計算コストがかかる。
提案したFastFlowNetは、周知の粗大なやり方で、以下のイノベーションで機能する。
論文 参考訳(メタデータ) (2021-03-08T03:09:37Z) - Non-Parametric Adaptive Network Pruning [125.4414216272874]
アルゴリズム設計を簡略化するノンパラメトリックモデリングを導入。
顔認識コミュニティに触発されて,メッセージパッシングアルゴリズムを用いて,適応的な例示数を求める。
EPrunerは「重要」フィルタを決定する際にトレーニングデータへの依存を壊します。
論文 参考訳(メタデータ) (2021-01-20T06:18:38Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
目的の新たな微分可能近似に基づく最適な合成データ生成法を提案する。
提案手法は,学習データ生成の高速化(最大50Times$)と,実世界のテストデータセットの精度向上(+8.7%$)を実現している。
論文 参考訳(メタデータ) (2020-08-16T11:36:11Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
本稿では,浮動小数点演算を除去するために,AQDと呼ばれる高精度な量子化オブジェクト検出ソリューションを提案する。
我々のAQDは、非常に低ビットのスキームの下での完全精度と比較して、同等またはそれ以上の性能を実現しています。
論文 参考訳(メタデータ) (2020-07-14T09:07:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。