Learning to Localize Leakage of Cryptographic Sensitive Variables
- URL: http://arxiv.org/abs/2503.07464v1
- Date: Mon, 10 Mar 2025 15:42:30 GMT
- Title: Learning to Localize Leakage of Cryptographic Sensitive Variables
- Authors: Jimmy Gammell, Anand Raghunathan, Abolfazl Hashemi, Kaushik Roy,
- Abstract summary: We develop a principled deep learning framework for determining the relative leakage due to measurements recorded at different points in time.<n>This information is invaluable to cryptographic hardware designers for understanding *why* their hardware leaks.
- Score: 13.98875599619791
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While cryptographic algorithms such as the ubiquitous Advanced Encryption Standard (AES) are secure, *physical implementations* of these algorithms in hardware inevitably 'leak' sensitive data such as cryptographic keys. A particularly insidious form of leakage arises from the fact that hardware consumes power and emits radiation in a manner that is statistically associated with the data it processes and the instructions it executes. Supervised deep learning has emerged as a state-of-the-art tool for carrying out *side-channel attacks*, which exploit this leakage by learning to map power/radiation measurements throughout encryption to the sensitive data operated on during that encryption. In this work we develop a principled deep learning framework for determining the relative leakage due to measurements recorded at different points in time, in order to inform *defense* against such attacks. This information is invaluable to cryptographic hardware designers for understanding *why* their hardware leaks and how they can mitigate it (e.g. by indicating the particular sections of code or electronic components which are responsible). Our framework is based on an adversarial game between a family of classifiers trained to estimate the conditional distributions of sensitive data given subsets of measurements, and a budget-constrained noise distribution which probabilistically erases individual measurements to maximize the loss of these classifiers. We demonstrate our method's efficacy and ability to overcome limitations of prior work through extensive experimental comparison with 8 baseline methods using 3 evaluation metrics and 6 publicly-available power/EM trace datasets from AES, ECC and RSA implementations. We provide an open-source PyTorch implementation of these experiments.
Related papers
- Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.<n>These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.<n>We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
arXiv Detail & Related papers (2025-01-25T04:53:36Z) - Power side-channel leakage localization through adversarial training of deep neural networks [10.840434597980723]
Supervised deep learning has emerged as an effective tool for carrying out power side-channel attacks on cryptographic implementations.
We propose a technique for identifying which timesteps in a power trace are responsible for leaking a cryptographic key.
arXiv Detail & Related papers (2024-10-29T18:04:41Z) - A Transformer-Based Framework for Payload Malware Detection and Classification [0.0]
Techniques such as Deep Packet Inspection (DPI) have been introduced to allow IDSs analyze the content of network packets.
In this paper, we propose a revolutionary DPI algorithm based on transformers adapted for the purpose of detecting malicious traffic.
arXiv Detail & Related papers (2024-03-27T03:25:45Z) - Privacy Preserving Anomaly Detection on Homomorphic Encrypted Data from IoT Sensors [0.9831489366502302]
Homomorphic encryption schemes are promising solutions as they enable the processing and execution of operations on IoT data while still encrypted.
We propose a novel privacy-preserving anomaly detection solution designed for homomorphically encrypted data generated by IoT devices.
arXiv Detail & Related papers (2024-03-14T12:11:25Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
Vulnerability of deep neural networks to adversarial perturbations has been widely perceived in the computer vision community.
Current algorithms typically detect adversarial patterns through discriminative decomposition for natural and adversarial data.
We propose a discriminative detector relying on a spatial-frequency Krawtchouk decomposition.
arXiv Detail & Related papers (2023-05-18T10:18:59Z) - PEOPL: Characterizing Privately Encoded Open Datasets with Public Labels [59.66777287810985]
We introduce information-theoretic scores for privacy and utility, which quantify the average performance of an unfaithful user.
We then theoretically characterize primitives in building families of encoding schemes that motivate the use of random deep neural networks.
arXiv Detail & Related papers (2023-03-31T18:03:53Z) - Pre-trained Encoders in Self-Supervised Learning Improve Secure and
Privacy-preserving Supervised Learning [63.45532264721498]
Self-supervised learning is an emerging technique to pre-train encoders using unlabeled data.
We perform first systematic, principled measurement study to understand whether and when a pretrained encoder can address the limitations of secure or privacy-preserving supervised learning algorithms.
arXiv Detail & Related papers (2022-12-06T21:35:35Z) - DCDetector: An IoT terminal vulnerability mining system based on
distributed deep ensemble learning under source code representation [2.561778620560749]
The goal of the research is to intelligently detect vulnerabilities in source codes of high-level languages such as C/C++.
This enables us to propose a code representation of sensitive sentence-related slices of source code, and to detect vulnerabilities by designing a distributed deep ensemble learning model.
Experiments show that this method can reduce the false positive rate of traditional static analysis and improve the performance and accuracy of machine learning.
arXiv Detail & Related papers (2022-11-29T14:19:14Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - On Deep Learning with Label Differential Privacy [54.45348348861426]
We study the multi-class classification setting where the labels are considered sensitive and ought to be protected.
We propose a new algorithm for training deep neural networks with label differential privacy, and run evaluations on several datasets.
arXiv Detail & Related papers (2021-02-11T15:09:06Z) - Efficient CNN Building Blocks for Encrypted Data [6.955451042536852]
Homomorphic Encryption (FHE) is a promising technique to enable machine learning and inferencing.
We show that operational parameters of the chosen FHE scheme have a major impact on the design of the machine learning model.
Our empirical study shows that choice of aforementioned design parameters result in significant trade-offs between accuracy, security level, and computational time.
arXiv Detail & Related papers (2021-01-30T21:47:23Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.