Privacy Preserving Anomaly Detection on Homomorphic Encrypted Data from IoT Sensors
- URL: http://arxiv.org/abs/2403.09322v1
- Date: Thu, 14 Mar 2024 12:11:25 GMT
- Title: Privacy Preserving Anomaly Detection on Homomorphic Encrypted Data from IoT Sensors
- Authors: Anca Hangan, Dragos Lazea, Tudor Cioara,
- Abstract summary: Homomorphic encryption schemes are promising solutions as they enable the processing and execution of operations on IoT data while still encrypted.
We propose a novel privacy-preserving anomaly detection solution designed for homomorphically encrypted data generated by IoT devices.
- Score: 0.9831489366502302
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: IoT devices have become indispensable components of our lives, and the advancement of AI technologies will make them even more pervasive, increasing the vulnerability to malfunctions or cyberattacks and raising privacy concerns. Encryption can mitigate these challenges; however, most existing anomaly detection techniques decrypt the data to perform the analysis, potentially undermining the encryption protection provided during transit or storage. Homomorphic encryption schemes are promising solutions as they enable the processing and execution of operations on IoT data while still encrypted, however, these schemes offer only limited operations, which poses challenges to their practical usage. In this paper, we propose a novel privacy-preserving anomaly detection solution designed for homomorphically encrypted data generated by IoT devices that efficiently detects abnormal values without performing decryption. We have adapted the Histogram-based anomaly detection technique for TFHE scheme to address limitations related to the input size and the depth of computation by implementing vectorized support operations. These operations include addition, value placement in buckets, labeling abnormal buckets based on a threshold frequency, labeling abnormal values based on their range, and bucket labels. Evaluation results show that the solution effectively detects anomalies without requiring data decryption and achieves consistent results comparable to the mechanism operating on plain data. Also, it shows robustness and resilience against various challenges commonly encountered in IoT environments, such as noisy sensor data, adversarial attacks, communication failures, and device malfunctions. Moreover, the time and computational overheads determined for several solution configurations, despite being large, are reasonable compared to those reported in existing literature.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - DataSeal: Ensuring the Verifiability of Private Computation on Encrypted Data [14.21750921409931]
We introduce DataSeal, which combines the low overhead of the algorithm-based fault tolerance (ABFT) technique with the confidentiality of Fully Homomorphic Encryption (FHE)
DataSeal achieves much lower overheads for providing computation verifiability for FHE than other techniques that include MAC, ZKP, and TEE.
arXiv Detail & Related papers (2024-10-19T21:19:39Z) - Comparison of Encryption Algorithms for Wearable Devices in IoT Systems [0.0]
The Internet of Things (IoT) expansion has brought a new era of connected devices, including wearable devices like smartwatches and medical monitors.
Wearable devices offer innovative functionalities but also generate and transmit plenty of sensitive data, making their security and privacy the primary concerns.
Various encryption algorithms, each with its own set of advantages and limitations, are available to meet the diverse security and computational needs of wearable IoT devices.
arXiv Detail & Related papers (2024-09-01T19:08:52Z) - Federated PCA on Grassmann Manifold for IoT Anomaly Detection [23.340237814344384]
Traditional machine learning-based intrusion detection systems (ML-IDS) possess limitations such as the requirement for labeled data.
Recent unsupervised ML-IDS approaches such as AutoEncoders and Generative Adversarial Networks (GAN) offer alternative solutions.
This paper proposes a novel federated unsupervised anomaly detection framework, FedPCA, that learns common representations of distributed non-i.i.d. datasets.
arXiv Detail & Related papers (2024-07-10T07:23:21Z) - KiNETGAN: Enabling Distributed Network Intrusion Detection through Knowledge-Infused Synthetic Data Generation [0.0]
We propose a knowledge-infused Generative Adversarial Network for generating synthetic network activity data (KiNETGAN)
Our approach enhances the resilience of distributed intrusion detection while addressing privacy concerns.
arXiv Detail & Related papers (2024-05-26T08:02:02Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z) - Towards a Privacy-preserving Deep Learning-based Network Intrusion
Detection in Data Distribution Services [0.0]
Data Distribution Service (DDS) is an innovative approach towards communication in ICS/IoT infrastructure and robotics.
Traditional intrusion detection systems (IDS) do not detect any anomalies in the publish/subscribe method.
This report presents an experimental work on simulation and application of Deep Learning for their detection.
arXiv Detail & Related papers (2021-06-12T12:53:38Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.