NeAS: 3D Reconstruction from X-ray Images using Neural Attenuation Surface
- URL: http://arxiv.org/abs/2503.07491v1
- Date: Mon, 10 Mar 2025 16:11:58 GMT
- Title: NeAS: 3D Reconstruction from X-ray Images using Neural Attenuation Surface
- Authors: Chengrui Zhu, Ryoichi Ishikawa, Masataka Kagesawa, Tomohisa Yuzawa, Toru Watsuji, Takeshi Oishi,
- Abstract summary: Reconstructing 3D structures from 2D X-ray images is a valuable technique in medical applications that requires less radiation exposure than computed tomography scans.<n>Recent approaches that use implicit neural representations have enabled the synthesis of novel views from sparse X-ray images.<n>We propose a novel approach for reconstructing 3D scenes using a Neural Attenuation Surface (NeAS) that simultaneously captures the surface geometry and attenuation coefficient fields.
- Score: 0.5772546394254112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing three-dimensional (3D) structures from two-dimensional (2D) X-ray images is a valuable and efficient technique in medical applications that requires less radiation exposure than computed tomography scans. Recent approaches that use implicit neural representations have enabled the synthesis of novel views from sparse X-ray images. However, although image synthesis has improved the accuracy, the accuracy of surface shape estimation remains insufficient. Therefore, we propose a novel approach for reconstructing 3D scenes using a Neural Attenuation Surface (NeAS) that simultaneously captures the surface geometry and attenuation coefficient fields. NeAS incorporates a signed distance function (SDF), which defines the attenuation field and aids in extracting the 3D surface within the scene. We conducted experiments using simulated and authentic X-ray images, and the results demonstrated that NeAS could accurately extract 3D surfaces within a scene using only 2D X-ray images.
Related papers
- X-Field: A Physically Grounded Representation for 3D X-ray Reconstruction [25.13707706037451]
X-ray imaging is indispensable in medical diagnostics, yet its use is tightly regulated due to potential health risks.
Recent research focuses on generating novel views from sparse inputs and reconstructing Computed Tomography (CT) volumes.
We introduce X-Field, the first 3D representation specifically designed for X-ray imaging.
arXiv Detail & Related papers (2025-03-11T16:31:56Z) - TomoGRAF: A Robust and Generalizable Reconstruction Network for Single-View Computed Tomography [3.1209855614927275]
Traditional analytical/iterative CT reconstruction algorithms require hundreds of angular data samplings.
We develop a novel TomoGRAF framework incorporating the unique X-ray transportation physics to reconstruct high-quality 3D volumes.
arXiv Detail & Related papers (2024-11-12T20:07:59Z) - X-Ray: A Sequential 3D Representation For Generation [54.160173837582796]
We introduce X-Ray, a novel 3D sequential representation inspired by x-ray scans.
X-Ray transforms a 3D object into a series of surface frames at different layers, making it suitable for generating 3D models from images.
arXiv Detail & Related papers (2024-04-22T16:40:11Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking.<n>We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images.<n>We demonstrate that our differentiable terms allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering.
arXiv Detail & Related papers (2024-03-26T17:21:24Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - Oral-3Dv2: 3D Oral Reconstruction from Panoramic X-Ray Imaging with
Implicit Neural Representation [3.8215162658168524]
Oral-3Dv2 is a non-adversarial-learning-based model in 3D radiology reconstruction from a single panoramic X-ray image.
Our model learns to represent the 3D oral structure in an implicit way by mapping 2D coordinates into density values of voxels in the 3D space.
To the best of our knowledge, this is the first work of a non-adversarial-learning-based model in 3D radiology reconstruction from a single panoramic X-ray image.
arXiv Detail & Related papers (2023-03-21T18:17:27Z) - NeRFMeshing: Distilling Neural Radiance Fields into
Geometrically-Accurate 3D Meshes [56.31855837632735]
We propose a compact and flexible architecture that enables easy 3D surface reconstruction from any NeRF-driven approach.
Our final 3D mesh is physically accurate and can be rendered in real time on an array of devices.
arXiv Detail & Related papers (2023-03-16T16:06:03Z) - Enhancement of Novel View Synthesis Using Omnidirectional Image
Completion [61.78187618370681]
We present a method for synthesizing novel views from a single 360-degree RGB-D image based on the neural radiance field (NeRF)
Experiments demonstrated that the proposed method can synthesize plausible novel views while preserving the features of the scene for both artificial and real-world data.
arXiv Detail & Related papers (2022-03-18T13:49:25Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
A radiograph visualizes the internal anatomy of a patient through the use of X-ray, which projects 3D information onto a 2D plane.
To the best of our knowledge, this is the first work on radiograph view synthesis.
We show that by gaining an understanding of radiography in 3D space, our method can be applied to radiograph bone extraction and suppression without groundtruth bone labels.
arXiv Detail & Related papers (2020-12-04T05:08:53Z) - End-To-End Convolutional Neural Network for 3D Reconstruction of Knee
Bones From Bi-Planar X-Ray Images [6.645111950779666]
We present an end-to-end Convolutional Neural Network (CNN) approach for 3D reconstruction of knee bones directly from two bi-planar X-ray images.
arXiv Detail & Related papers (2020-04-02T08:37:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.