BrainNet-MoE: Brain-Inspired Mixture-of-Experts Learning for Neurological Disease Identification
- URL: http://arxiv.org/abs/2503.07640v1
- Date: Wed, 05 Mar 2025 22:19:49 GMT
- Title: BrainNet-MoE: Brain-Inspired Mixture-of-Experts Learning for Neurological Disease Identification
- Authors: Jing Zhang, Xiaowei Yu, Tong Chen, Chao Cao, Mingheng Chen, Yan Zhuang, Yanjun Lyu, Lu Zhang, Li Su, Tianming Liu, Dajiang Zhu,
- Abstract summary: The Lewy body dementia (LBD) is the second most common neurodegenerative dementia after Alzheimer's disease (AD)<n>Our work represents a pioneering effort in modeling system-level artificial neural network called BrainNet-MoE for brain modeling and diagnosing.
- Score: 31.45078414913088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Lewy body dementia (LBD) is the second most common neurodegenerative dementia after Alzheimer's disease (AD). Early differentiation between AD and LBD is crucial because they require different treatment approaches, but this is challenging due to significant clinical overlap, heterogeneity, complex pathogenesis, and the rarity of LBD. While recent advances in artificial intelligence (AI) demonstrate powerful learning capabilities and offer new hope for accurate diagnosis, existing methods primarily focus on designing "neural-level networks". Our work represents a pioneering effort in modeling system-level artificial neural network called BrainNet-MoE for brain modeling and diagnosing. Inspired by the brain's hierarchical organization of bottom-up sensory integration and top-down control, we design a set of disease-specific expert groups to process brain sub-network under different condition, A disease gate mechanism guides the specializa-tion of expert groups, while a transformer layer enables communication be-tween all sub-networks, generating a comprehensive whole-brain represen-tation for downstream disease classification. Experimental results show superior classification accuracy with interpretable insights into how brain sub-networks contribute to different neurodegenerative conditions.
Related papers
- Brain Foundation Models with Hypergraph Dynamic Adapter for Brain Disease Analysis [18.02038938366483]
Brain diseases, such as Alzheimer's disease and brain tumors, present profound challenges due to their complexity and societal impact.
Recent advancements in brain foundation models have shown significant promise in addressing a range of brain-related tasks.
We propose SAM-Brain3D, a brain-specific foundation model trained on over 66,000 brain image-label pairs.
arXiv Detail & Related papers (2025-05-01T16:06:17Z) - MindAligner: Explicit Brain Functional Alignment for Cross-Subject Visual Decoding from Limited fMRI Data [64.92867794764247]
MindAligner is a framework for cross-subject brain decoding from limited fMRI data.<n>Brain Transfer Matrix (BTM) projects the brain signals of an arbitrary new subject to one of the known subjects.<n>Brain Functional Alignment module is proposed to perform soft cross-subject brain alignment under different visual stimuli.
arXiv Detail & Related papers (2025-02-07T16:01:59Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Brain-Aware Readout Layers in GNNs: Advancing Alzheimer's early Detection and Neuroimaging [1.074960192271861]
This study introduces a novel brain-aware readout layer (BA readout layer) for Graph Neural Networks (GNNs)
By clustering brain regions based on functional connectivity and node embedding, this layer improves the GNN's capability to capture complex brain network characteristics.
Our results show that GNNs with the BA readout layer significantly outperform traditional models in predicting the Preclinical Alzheimer's Cognitive Composite (PACC) score.
arXiv Detail & Related papers (2024-10-03T05:04:45Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - BrainNetDiff: Generative AI Empowers Brain Network Generation via
Multimodal Diffusion Model [7.894526238189559]
We introduce BrainNetDiff, which combines a multi-head Transformer encoder to extract relevant features from fMRI time series.
We validate applicability of this framework in the construction of brain network across healthy and neurologically impaired cohorts.
arXiv Detail & Related papers (2023-11-09T08:27:12Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Transformer-Based Hierarchical Clustering for Brain Network Analysis [13.239896897835191]
We propose a novel interpretable transformer-based model for joint hierarchical cluster identification and brain network classification.
With the help of hierarchical clustering, the model achieves increased accuracy and reduced runtime complexity while providing plausible insight into the functional organization of brain regions.
arXiv Detail & Related papers (2023-05-06T22:14:13Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
Brain diffuser is a diffusion based end-to-end brain network generative model.
It exploits more structural connectivity features and disease-related information by analyzing disparities in structural brain networks across subjects.
For the case of Alzheimer's disease, the proposed model performs better than the results from existing toolkits on the Alzheimer's Disease Neuroimaging Initiative database.
arXiv Detail & Related papers (2023-03-11T14:04:58Z) - Interpretable Graph Neural Networks for Connectome-Based Brain Disorder
Analysis [31.281194583900998]
We propose an interpretable framework to analyze disorder-specific Regions of Interest (ROIs) and prominent connections.
The proposed framework consists of two modules: a brain-network-oriented backbone model for disease prediction and a globally shared explanation generator.
arXiv Detail & Related papers (2022-06-30T08:02:05Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.