論文の概要: dnamite: A Python Package for Neural Additive Models
- arxiv url: http://arxiv.org/abs/2503.07642v1
- Date: Thu, 06 Mar 2025 00:24:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:45:53.066681
- Title: dnamite: A Python Package for Neural Additive Models
- Title(参考訳): dnamite: ニューラル付加モデルのためのPythonパッケージ
- Authors: Mike Van Ness, Madeleine Udell,
- Abstract要約: 本稿では,ニューラル付加モデル(NAM)を実装したPythonパッケージであるdnamiteを紹介する。
本報告では,dnamiteの基礎となる方法論,設計原理,実装について述べる。
特徴選択と生存分析の両方が重要である実世界の環境で、dnamiteの有用性を実証する。
- 参考スコア(独自算出の注目度): 18.987678432106563
- License:
- Abstract: Additive models offer accurate and interpretable predictions for tabular data, a critical tool for statistical modeling. Recent advances in Neural Additive Models (NAMs) allow these models to handle complex machine learning tasks, including feature selection and survival analysis, on large-scale data. This paper introduces dnamite, a Python package that implements NAMs for these advanced applications. dnamite provides a scikit-learn style interface to train regression, classification, and survival analysis NAMs, with built-in support for feature selection. We describe the methodology underlying dnamite, its design principles, and its implementation. Through an application to the MIMIC III clinical dataset, we demonstrate the utility of dnamite in a real-world setting where feature selection and survival analysis are both important. The package is publicly available via pip and documented at dnamite.readthedocs.io.
- Abstract(参考訳): 付加モデルは、統計モデリングの重要なツールである表データの正確かつ解釈可能な予測を提供する。
ニューラル付加モデル(NAMs)の最近の進歩により、これらのモデルは大規模データ上で、特徴選択や生存分析を含む複雑な機械学習タスクを処理できるようになる。
本稿では,これらの高度なアプリケーション向けにNAMを実装したPythonパッケージであるdnamiteを紹介する。
dnamiteは、レグレッション、分類、サバイバル分析をトレーニングするためのScikit-learnスタイルのインターフェイスを提供する。
本報告では,dnamiteの基礎となる方法論,設計原理,実装について述べる。
MIMIC III 臨床データセットへの応用を通して,特徴選択と生存分析の両方が重要である実世界の環境において,dnamite の有用性を実証する。
パッケージはpipを介して公開され、dnamite.readthedocs.ioでドキュメント化されている。
関連論文リスト
- A Data-Centric Perspective on Evaluating Machine Learning Models for Tabular Data [9.57464542357693]
実世界のモデリングパイプラインは、しばしばデータセット固有の前処理と特徴工学を必要とするため、モデル中心の評価は偏りがあることを実証する。
Kaggleコンペティションから10の関連するデータセットを選択し、データセット毎に専門家レベルの前処理パイプラインを実装します。
データセット固有の機能エンジニアリングの後、モデルランキングは大幅に変化し、性能差が減少し、モデル選択の重要性が低下する。
論文 参考訳(メタデータ) (2024-07-02T09:54:39Z) - IGANN Sparse: Bridging Sparsity and Interpretability with Non-linear Insight [4.010646933005848]
IGANN Sparseは、一般化された加法モデルのファミリーから生まれた、新しい機械学習モデルである。
トレーニング中の非線形特徴選択プロセスを通じて、スパシティを促進する。
これにより、予測性能を犠牲にすることなく、モデル空間の改善による解釈可能性を保証する。
論文 参考訳(メタデータ) (2024-03-17T22:44:36Z) - Learning Active Subspaces and Discovering Important Features with Gaussian Radial Basis Functions Neural Networks [0.0]
モデルの訓練が完了すると抽出できる精度行列のスペクトルに含まれる貴重な情報を示す。
回帰,分類,特徴選択タスクの数値実験を行った。
その結果,提案モデルが競合モデルに比べて魅力的な予測性能が得られるだけでなく,予測性能も向上することが示唆された。
論文 参考訳(メタデータ) (2023-07-11T09:54:30Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Datamodels: Predicting Predictions from Training Data [86.66720175866415]
本稿では,モデルクラスの振る舞いを学習データの観点から分析するための概念的枠組みであるデータモデリングについて述べる。
単純な線形データモデルであっても、モデル出力をうまく予測できることが示される。
論文 参考訳(メタデータ) (2022-02-01T18:15:24Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Learning Dynamics Models for Model Predictive Agents [28.063080817465934]
モデルに基づく強化学習は、データからテクトダイナミックスモデルを学習し、そのモデルを使用して振る舞いを最適化する。
本稿では, 動的モデル学習における設計選択の役割を, 基礎構造モデルとの比較により明らかにすることを目的としている。
論文 参考訳(メタデータ) (2021-09-29T09:50:25Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - PyHealth: A Python Library for Health Predictive Models [53.848478115284195]
PyHealthは、医療データ上で様々な予測モデルを開発するためのオープンソースのPythonツールボックスである。
データ前処理モジュールにより、複雑なヘルスケアデータセットを機械学習フレンドリーなフォーマットに変換できます。
予測モデリングモジュールは、確立されたアンサンブルツリーとディープニューラルネットワークベースのアプローチを含む30以上の機械学習モデルを提供します。
論文 参考訳(メタデータ) (2021-01-11T22:02:08Z) - It's the Best Only When It Fits You Most: Finding Related Models for
Serving Based on Dynamic Locality Sensitive Hashing [1.581913948762905]
トレーニングデータの作成は、生産や研究のためにディープラーニングモデルをデプロイするライフサイクルにおいて、しばしばボトルネックとなる。
本稿では,対象のデータセットと利用可能なモデルのトレーニングデータセットの類似性に基づいて,関連するモデルを検索してサービスするエンド・ツー・エンドプロセスを提案する。
論文 参考訳(メタデータ) (2020-10-13T22:52:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。