TS-RAG: Retrieval-Augmented Generation based Time Series Foundation Models are Stronger Zero-Shot Forecaster
- URL: http://arxiv.org/abs/2503.07649v3
- Date: Tue, 27 May 2025 20:50:23 GMT
- Title: TS-RAG: Retrieval-Augmented Generation based Time Series Foundation Models are Stronger Zero-Shot Forecaster
- Authors: Kanghui Ning, Zijie Pan, Yu Liu, Yushan Jiang, James Y. Zhang, Kashif Rasul, Anderson Schneider, Lintao Ma, Yuriy Nevmyvaka, Dongjin Song,
- Abstract summary: We present TS-RAG, a retrieval-augmented generation framework for time series forecasting.<n>Specifically, TS-RAG leverages pre-trained time series encoders to retrieve semantically relevant segments from a dedicated knowledge base.<n>We show that TS-RAG achieves state-of-the-art zero-shot forecasting performance, outperforming the existing TSFMs by up to 6.84% across diverse domains.
- Score: 14.512119661418522
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) and Foundation Models (FMs) have recently become prevalent for time series forecasting tasks. While fine-tuning LLMs enables domain adaptation, they often struggle to generalize across diverse and unseen datasets. Moreover, existing Time Series Foundation Models (TSFMs) still face challenges in handling non-stationary dynamics and distribution shifts, largely due to the lack of effective mechanisms for adaptation. To this end, we present TS-RAG, a retrieval-augmented generation framework for time series forecasting that enhances the generalization and interpretability of TSFMs. Specifically, TS-RAG leverages pre-trained time series encoders to retrieve semantically relevant segments from a dedicated knowledge base, enriching the contextual representation of the input query. Furthermore, we propose an Adaptive Retrieval Mixer (ARM) module that dynamically fuses the retrieved patterns with the TSFM's internal representation, improving forecasting accuracy without requiring task-specific fine-tuning. Thorough empirical studies on seven public benchmark datasets demonstrate that TS-RAG achieves state-of-the-art zero-shot forecasting performance, outperforming the existing TSFMs by up to 6.84% across diverse domains while also providing desirable interpretability.
Related papers
- Multi-Scale Finetuning for Encoder-based Time Series Foundation Models [56.503053716053]
Time series foundation models (TSFMs) demonstrate impressive zero-shot performance for time series forecasting.<n>We argue that it falls short of fully leveraging TSFMs' capabilities, often resulting in overfitting and suboptimal performance.<n>We propose textbftextscfinetextbftextsctuning (textbfMSFT), a simple yet general framework that explicitly integrates multi-scale modeling into the finetuning process.
arXiv Detail & Related papers (2025-06-17T01:06:01Z) - Can Time-Series Foundation Models Perform Building Energy Management Tasks? [5.450531952940644]
Building energy management tasks require processing and learning from a variety of time-series data.<n>Existing solutions rely on bespoke task- and data-specific models to perform these tasks.<n>Inspired by the transformative success of Large Language Models (LLMs), Time-Series Foundation Models (TSFMs) have the potential to change this.
arXiv Detail & Related papers (2025-06-12T19:45:10Z) - Less is More: Unlocking Specialization of Time Series Foundation Models via Structured Pruning [29.377178687865136]
Time Series Foundation Models pre-train vast parameters and achieve remarkable zero-shot forecasting performance.<n>Surprisingly, even after fine-tuning, TSFMs cannot consistently outperform smaller, specialized models trained on full-shot downstream data.<n>We propose a structured pruning method to regularize the subsequent fine-tuning process by focusing it on a more relevant and compact parameter space.
arXiv Detail & Related papers (2025-05-29T07:33:49Z) - LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring.
Existing Large Language Models (LLMs) usually perform suboptimally because they neglect the inherent characteristics of time series data.
We propose LLM-PS to empower the LLM for TSF by learning the fundamental textitPatterns and meaningful textitSemantics from time series data.
arXiv Detail & Related papers (2025-03-12T11:45:11Z) - General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
We show that time series with different time granularities (or corresponding frequency resolutions) exhibit distinct joint distributions in the frequency domain.<n>A novel Fourier knowledge attention mechanism is proposed to enable learning time-aware representations from both the temporal and frequency domains.<n>An autoregressive blank infilling pre-training framework is incorporated to time series analysis for the first time, leading to a generative tasks agnostic pre-training strategy.
arXiv Detail & Related papers (2025-02-05T15:20:04Z) - Time Series Foundational Models: Their Role in Anomaly Detection and Prediction [0.0]
Time series foundational models (TSFM) have gained prominence in time series forecasting.<n>This paper critically evaluates the efficacy of TSFM in anomaly detection and prediction tasks.
arXiv Detail & Related papers (2024-12-26T17:15:30Z) - Unlocking Tuning-Free Few-Shot Adaptability in Visual Foundation Models by Recycling Pre-Tuned LoRAs [76.40876036912537]
Large Language Models (LLMs) demonstrate strong few-shot adaptability without requiring fine-tuning.<n>Current Visual Foundation Models (VFMs) require explicit fine-tuning with sufficient tuning data.<n>We propose a framework, LoRA Recycle, that distills a meta-LoRA from diverse pre-tuned LoRAs with a meta-learning objective.
arXiv Detail & Related papers (2024-12-03T07:25:30Z) - Retrieval Augmented Time Series Forecasting [19.71444850959715]
We argue that the dynamic and event-driven nature of time-series data makes RAG a crucial component of time-series forecasting.
We introduce a principled RAG framework for time-series forecasting, called Retrieval Augmented Forecasting (RAF)
arXiv Detail & Related papers (2024-11-12T23:55:11Z) - FlexTSF: A Universal Forecasting Model for Time Series with Variable Regularities [17.164913785452367]
We propose FlexTSF, a universal time series forecasting model that possesses better generalization and supports both regular and irregular time series.
Experiments on 12 datasets show that FlexTSF outperforms state-of-the-art forecasting models respectively designed for regular and irregular time series.
arXiv Detail & Related papers (2024-10-30T16:14:09Z) - TSFM-Bench: A Comprehensive and Unified Benchmark of Foundation Models for Time Series Forecasting [35.505530132151]
Time Series Forecasting (TSF) is key functionality in numerous fields, such as financial investment, weather services, and energy management.<n>Many TSF methods require domain-specific data collection and model training and do not generalize well when applied in other domains.<n>Time Series Foundation Models (TSFMs) that are pre-trained on massive heterogeneous time series data aim to overcome these limitations.
arXiv Detail & Related papers (2024-10-15T17:23:49Z) - Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
This paper introduces Moirai-MoE, using a single input/output projection layer while delegating the modeling of diverse time series patterns to the sparse mixture of experts.
Extensive experiments on 39 datasets demonstrate the superiority of Moirai-MoE over existing foundation models in both in-distribution and zero-shot scenarios.
arXiv Detail & Related papers (2024-10-14T13:01:11Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - MPR-Net:Multi-Scale Pattern Reproduction Guided Universality Time Series
Interpretable Forecasting [13.790498420659636]
Time series forecasting has received wide interest from existing research due to its broad applications inherent challenging.
This paper proposes a forecasting model, MPR-Net. It first adaptively decomposes multi-scale historical series patterns using convolution operation, then constructs a pattern extension forecasting method based on the prior knowledge of pattern reproduction, and finally reconstructs future patterns into future series using deconvolution operation.
By leveraging the temporal dependencies present in the time series, MPR-Net not only achieves linear time complexity, but also makes the forecasting process interpretable.
arXiv Detail & Related papers (2023-07-13T13:16:01Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
We propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module.
By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns.
Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise.
arXiv Detail & Related papers (2021-07-13T11:08:47Z) - Improving the Accuracy of Global Forecasting Models using Time Series
Data Augmentation [7.38079566297881]
Forecasting models that are trained across sets of many time series, known as Global Forecasting Models (GFM), have shown promising results in forecasting competitions and real-world applications.
We propose a novel, data augmentation based forecasting framework that is capable of improving the baseline accuracy of GFM models in less data-abundant settings.
arXiv Detail & Related papers (2020-08-06T13:52:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.