Can Time-Series Foundation Models Perform Building Energy Management Tasks?
- URL: http://arxiv.org/abs/2506.11250v1
- Date: Thu, 12 Jun 2025 19:45:10 GMT
- Title: Can Time-Series Foundation Models Perform Building Energy Management Tasks?
- Authors: Ozan Baris Mulayim, Pengrui Quan, Liying Han, Xiaomin Ouyang, Dezhi Hong, Mario Bergés, Mani Srivastava,
- Abstract summary: Building energy management tasks require processing and learning from a variety of time-series data.<n>Existing solutions rely on bespoke task- and data-specific models to perform these tasks.<n>Inspired by the transformative success of Large Language Models (LLMs), Time-Series Foundation Models (TSFMs) have the potential to change this.
- Score: 5.450531952940644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building energy management (BEM) tasks require processing and learning from a variety of time-series data. Existing solutions rely on bespoke task- and data-specific models to perform these tasks, limiting their broader applicability. Inspired by the transformative success of Large Language Models (LLMs), Time-Series Foundation Models (TSFMs), trained on diverse datasets, have the potential to change this. Were TSFMs to achieve a level of generalizability across tasks and contexts akin to LLMs, they could fundamentally address the scalability challenges pervasive in BEM. To understand where they stand today, we evaluate TSFMs across four dimensions: (1) generalizability in zero-shot univariate forecasting, (2) forecasting with covariates for thermal behavior modeling, (3) zero-shot representation learning for classification tasks, and (4) robustness to performance metrics and varying operational conditions. Our results reveal that TSFMs exhibit \emph{limited} generalizability, performing only marginally better than statistical models on unseen datasets and modalities for univariate forecasting. Similarly, inclusion of covariates in TSFMs does not yield performance improvements, and their performance remains inferior to conventional models that utilize covariates. While TSFMs generate effective zero-shot representations for downstream classification tasks, they may remain inferior to statistical models in forecasting when statistical models perform test-time fitting. Moreover, TSFMs forecasting performance is sensitive to evaluation metrics, and they struggle in more complex building environments compared to statistical models. These findings underscore the need for targeted advancements in TSFM design, particularly their handling of covariates and incorporating context and temporal dynamics into prediction mechanisms, to develop more adaptable and scalable solutions for BEM.
Related papers
- Multi-Scale Finetuning for Encoder-based Time Series Foundation Models [56.503053716053]
Time series foundation models (TSFMs) demonstrate impressive zero-shot performance for time series forecasting.<n>We argue that it falls short of fully leveraging TSFMs' capabilities, often resulting in overfitting and suboptimal performance.<n>We propose textbftextscfinetextbftextsctuning (textbfMSFT), a simple yet general framework that explicitly integrates multi-scale modeling into the finetuning process.
arXiv Detail & Related papers (2025-06-17T01:06:01Z) - Less is More: Unlocking Specialization of Time Series Foundation Models via Structured Pruning [29.377178687865136]
Time Series Foundation Models pre-train vast parameters and achieve remarkable zero-shot forecasting performance.<n>Surprisingly, even after fine-tuning, TSFMs cannot consistently outperform smaller, specialized models trained on full-shot downstream data.<n>We propose a structured pruning method to regularize the subsequent fine-tuning process by focusing it on a more relevant and compact parameter space.
arXiv Detail & Related papers (2025-05-29T07:33:49Z) - LLM4FTS: Enhancing Large Language Models for Financial Time Series Prediction [0.0]
Traditional machine learning models exhibit limitations in this forecasting task constrained by their restricted model capacity.<n>We propose $LLM4FTS$, a novel framework that enhances temporal sequence modeling through learnable patch segmentation and dynamic wavelet convolution modules.<n>Experiments on real-world financial datasets substantiate the framework's efficacy, demonstrating superior performance in capturing complex market patterns and achieving state-of-the-art results in stock return prediction.
arXiv Detail & Related papers (2025-05-05T06:48:34Z) - Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric [99.56567010306807]
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications.<n>One core challenge of evaluation in the large language model (LLM) era is the generalization issue.<n>We propose Model Utilization Index (MUI), a mechanism interpretability enhanced metric that complements traditional performance scores.
arXiv Detail & Related papers (2025-04-10T04:09:47Z) - TS-RAG: Retrieval-Augmented Generation based Time Series Foundation Models are Stronger Zero-Shot Forecaster [14.512119661418522]
We present TS-RAG, a retrieval-augmented generation framework for time series forecasting.<n>Specifically, TS-RAG leverages pre-trained time series encoders to retrieve semantically relevant segments from a dedicated knowledge base.<n>We show that TS-RAG achieves state-of-the-art zero-shot forecasting performance, outperforming the existing TSFMs by up to 6.84% across diverse domains.
arXiv Detail & Related papers (2025-03-06T16:48:48Z) - Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
This work demonstrates that the tools and principles driving the success of large language models (LLMs) can be repurposed to tackle distribution-level tasks.<n>We propose meta-statistical learning, a framework inspired by multi-instance learning that reformulates statistical inference tasks as supervised learning problems.
arXiv Detail & Related papers (2025-02-17T18:04:39Z) - A generative foundation model for an all-in-one seismic processing framework [2.499907423888049]
generative seismic foundation model (GSFM) is a unified framework based on generative diffusion models (GDMs)<n>By adopting a target-oriented diffusion process prediction, GSFM improves computational efficiency without compromising accuracy.
arXiv Detail & Related papers (2025-02-03T07:01:36Z) - Time Series Foundational Models: Their Role in Anomaly Detection and Prediction [0.0]
Time series foundational models (TSFM) have gained prominence in time series forecasting.<n>This paper critically evaluates the efficacy of TSFM in anomaly detection and prediction tasks.
arXiv Detail & Related papers (2024-12-26T17:15:30Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.