Insights into Schizophrenia: Leveraging Machine Learning for Early Identification via EEG, ERP, and Demographic Attributes
- URL: http://arxiv.org/abs/2503.07650v2
- Date: Sat, 15 Mar 2025 09:36:34 GMT
- Title: Insights into Schizophrenia: Leveraging Machine Learning for Early Identification via EEG, ERP, and Demographic Attributes
- Authors: Sara Alkhalifa,
- Abstract summary: The research presents a machine learning (ML) classifier designed to differentiate between schizophrenia patients and healthy controls.<n>It uses features extracted from electroencephalogram (EEG) data, specifically focusing on event-related potentials (ERPs) and certain demographic variables.<n>The dataset comprises data from 81 participants, encompassing 32 healthy controls and 49 schizophrenia patients, all sourced from an online dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The research presents a machine learning (ML) classifier designed to differentiate between schizophrenia patients and healthy controls by utilising features extracted from electroencephalogram (EEG) data, specifically focusing on event-related potentials (ERPs) and certain demographic variables. The dataset comprises data from 81 participants, encompassing 32 healthy controls and 49 schizophrenia patients, all sourced from an online dataset. After preprocessing the dataset, our ML model achieved an accuracy of 99.930%. This performance outperforms earlier research, including those that used deep learning methods. Additionally, an analysis was conducted to assess individual features' contribution to improving classification accuracy. This involved systematically excluding specific features from the original dataset one at a time, and another technique involved an iterative process of removing features based on their entropy scores incrementally. The impact of these removals on model performance was evaluated to identify the most informative features.
Related papers
- Evaluating Facial Expression Recognition Datasets for Deep Learning: A Benchmark Study with Novel Similarity Metrics [4.137346786534721]
This study investigates the key characteristics and suitability of widely used Facial Expression Recognition (FER) datasets for training deep learning models.
We compiled and analyzed 24 FER datasets, including those targeting specific age groups such as children, adults, and the elderly.
Benchmark experiments using state-of-the-art neural networks reveal that large-scale, automatically collected datasets tend to generalize better.
arXiv Detail & Related papers (2025-03-26T11:01:00Z) - Detecting Dataset Bias in Medical AI: A Generalized and Modality-Agnostic Auditing Framework [8.520644988801243]
latent bias in machine learning datasets can be amplified during training and/or hidden during testing.
We present a data modality-agnostic auditing framework for generating targeted hypotheses about sources of bias.
We demonstrate the broad applicability and value of our method by analyzing large-scale medical datasets.
arXiv Detail & Related papers (2025-03-13T02:16:48Z) - Grading and Anomaly Detection for Automated Retinal Image Analysis using Deep Learning [0.5999777817331317]
The study conducted a systematic literature review using the PRISMA analysis and 62 articles has been investigated in the research.
The diverse deep-learning techniques that are employed for detecting DR lesions are discussed.
arXiv Detail & Related papers (2024-09-25T08:13:39Z) - Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning [0.0]
Parkinson's Disease (PD) is a progressive neurodegenerative disorder that significantly impacts both motor and non-motor functions, including speech.
This paper provides a comprehensive review of methods for PD recognition using speech data, highlighting advances in machine learning and data-driven approaches.
Various classification algorithms are explored, including logistic regression, SVM, and neural networks, with and without feature selection.
Our findings indicate that specific acoustic features and advanced machine-learning techniques can effectively differentiate between individuals with PD and healthy controls.
arXiv Detail & Related papers (2024-07-22T23:24:02Z) - Enhancing Readmission Prediction with Deep Learning: Extracting Biomedical Concepts from Clinical Texts [0.26813152817733554]
This study focuses on predicting patient readmission within less than 30 days using text mining techniques.
Various machine learning and deep learning methods were employed to develop a classification model for this purpose.
arXiv Detail & Related papers (2024-03-12T09:03:44Z) - Intelligent Diagnosis of Alzheimer's Disease Based on Machine Learning [24.467566885575998]
This study is based on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset.
It aims to explore early detection and disease progression in Alzheimer's disease (AD)
arXiv Detail & Related papers (2024-02-13T15:43:30Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z) - Deep Representation Learning of Patient Data from Electronic Health
Records (EHR): A Systematic Review [20.621261286239967]
Patient representation learning refers to learning a dense mathematical representation of a patient that encodes meaningful information from Electronic Health Records.
This study presents a systematic review of this field and provides both qualitative and quantitative analyses from a methodological perspective.
arXiv Detail & Related papers (2020-10-06T15:18:02Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.