Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning
- URL: http://arxiv.org/abs/2407.16091v1
- Date: Mon, 22 Jul 2024 23:24:02 GMT
- Title: Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning
- Authors: Niloofar Fadavi, Nazanin Fadavi,
- Abstract summary: Parkinson's Disease (PD) is a progressive neurodegenerative disorder that significantly impacts both motor and non-motor functions, including speech.
This paper provides a comprehensive review of methods for PD recognition using speech data, highlighting advances in machine learning and data-driven approaches.
Various classification algorithms are explored, including logistic regression, SVM, and neural networks, with and without feature selection.
Our findings indicate that specific acoustic features and advanced machine-learning techniques can effectively differentiate between individuals with PD and healthy controls.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parkinson's Disease (PD) is a progressive neurodegenerative disorder that significantly impacts both motor and non-motor functions, including speech. Early and accurate recognition of PD through speech analysis can greatly enhance patient outcomes by enabling timely intervention. This paper provides a comprehensive review of methods for PD recognition using speech data, highlighting advances in machine learning and data-driven approaches. We discuss the process of data wrangling, including data collection, cleaning, transformation, and exploratory data analysis, to prepare the dataset for machine learning applications. Various classification algorithms are explored, including logistic regression, SVM, and neural networks, with and without feature selection. Each method is evaluated based on accuracy, precision, and training time. Our findings indicate that specific acoustic features and advanced machine-learning techniques can effectively differentiate between individuals with PD and healthy controls. The study concludes with a comparison of the different models, identifying the most effective approaches for PD recognition, and suggesting potential directions for future research.
Related papers
- MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most prevalent dementia types.
This paper presents an innovative multi-omics approach to accurately differentiate AD from VaD, achieving a diagnostic accuracy of 89.25%.
arXiv Detail & Related papers (2024-11-06T10:13:28Z) - A Hybrid Deep Spatio-Temporal Attention-Based Model for Parkinson's
Disease Diagnosis Using Resting State EEG Signals [8.526741765074677]
This study presents a deep learning-based model for the diagnosis of Parkinson's disease (PD) using resting state electroencephalogram (EEG) signal.
The model is designed using a hybrid model, consists of convolutional neural network (CNN), bidirectional gated recurrent unit (Bi-GRU) and attention mechanism.
The results show that the proposed model can accurately diagnose PD with high performance on both the training and hold-out datasets.
arXiv Detail & Related papers (2023-08-14T20:06:19Z) - Analysis, Identification and Prediction of Parkinson Disease Sub-Types and Progression through Machine Learning [5.982922468400901]
This paper represents a groundbreaking advancement in Parkinson disease (PD) research by employing a novel machine learning framework to categorize PD into distinct subtypes and predict its progression.
This innovative approach enables the identification of subtle, yet critical, patterns in PD manifestation, which traditional methodologies often miss.
arXiv Detail & Related papers (2023-06-07T19:54:56Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Parkinsons Disease Detection via Resting-State Electroencephalography
Using Signal Processing and Machine Learning Techniques [0.0]
Parkinsons Disease (PD) is a neurodegenerative disorder resulting in motor deficits due to advancing degeneration of dopaminergic neurons.
EEG indicates abnormalities in PD patients.
One major challenge is the lack of a consistent, accurate, and systemic biomarker for PD in order to closely monitor the disease with therapeutic treatments and medication.
arXiv Detail & Related papers (2023-03-29T06:03:05Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
Both politics and pandemics have recently provided ample motivation for the development of machine learning-enabled disinformation (a.k.a. fake news) detection algorithms.
Existing literature has focused primarily on the fully-automated case, but the resulting techniques cannot reliably detect disinformation on the varied topics, sources, and time scales required for military applications.
By leveraging an already-available analyst as a human-in-the-loop, canonical machine learning techniques of sentiment analysis, aspect-based sentiment analysis, and stance detection become plausible methods to use for a partially-automated disinformation detection system.
arXiv Detail & Related papers (2021-11-09T13:30:34Z) - Machine learning discrimination of Parkinson's Disease stages from
walker-mounted sensors data [0.0]
This study applies machine learning methods to discriminate six stages of Parkinson's Disease (PD) progression.
The data was acquired by low cost walker-mounted sensors in an experiment at a movement disorders clinic.
arXiv Detail & Related papers (2020-06-22T09:34:12Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.