Log Optimization Simplification Method for Predicting Remaining Time
- URL: http://arxiv.org/abs/2503.07683v1
- Date: Mon, 10 Mar 2025 11:54:44 GMT
- Title: Log Optimization Simplification Method for Predicting Remaining Time
- Authors: Jianhong Ye, Siyuan Zhang, Yan Lin,
- Abstract summary: We present a prediction point selection algorithm designed to avoid the simplification of all points that function similarly.<n> Experiments indicate that the simplified event log retains its predictive performance and, in some cases, enhances its predictive accuracy compared to the original event log.
- Score: 9.196871811517026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information systems generate a large volume of event log data during business operations, much of which consists of low-value and redundant information. When performance predictions are made directly from these logs, the accuracy of the predictions can be compromised. Researchers have explored methods to simplify and compress these data while preserving their valuable components. Most existing approaches focus on reducing the dimensionality of the data by eliminating redundant and irrelevant features. However, there has been limited investigation into the efficiency of execution both before and after event log simplification. In this paper, we present a prediction point selection algorithm designed to avoid the simplification of all points that function similarly. We select sequences or self-loop structures to form a simplifiable segment, and we optimize the deviation between the actual simplifiable value and the original data prediction value to prevent over-simplification. Experiments indicate that the simplified event log retains its predictive performance and, in some cases, enhances its predictive accuracy compared to the original event log.
Related papers
- Query-Adaptive Predictive Inference with Partial Labels [0.0]
We propose a new methodology to construct predictive sets using only partially labeled data on top of black-box predictive models.
Our experiments highlight the validity of our predictive set construction as well as the attractiveness of a more flexible user-dependent loss framework.
arXiv Detail & Related papers (2022-06-15T01:48:42Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
We propose a generalization of conformal prediction to multiple learnable parameters.
We show that it achieves approximate valid population coverage and near-optimal efficiency within class.
Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly.
arXiv Detail & Related papers (2022-02-22T18:37:23Z) - When less is more: Simplifying inputs aids neural network understanding [12.73748893809092]
In this work, we measure simplicity with the encoding bit size given by a pretrained generative model.
We investigate the effect of such simplification in several scenarios: conventional training, dataset condensation and post-hoc explanations.
arXiv Detail & Related papers (2022-01-14T18:58:36Z) - Understanding Memorization from the Perspective of Optimization via
Efficient Influence Estimation [54.899751055620904]
We study the phenomenon of memorization with turn-over dropout, an efficient method to estimate influence and memorization, for data with true labels (real data) and data with random labels (random data)
Our main findings are: (i) For both real data and random data, the optimization of easy examples (e.g., real data) and difficult examples (e.g., random data) are conducted by the network simultaneously, with easy ones at a higher speed; (ii) For real data, a correct difficult example in the training dataset is more informative than an easy one.
arXiv Detail & Related papers (2021-12-16T11:34:23Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z) - Few-shot Conformal Prediction with Auxiliary Tasks [29.034390810078172]
We develop a novel approach to conformal prediction when the target task has limited data available for training.
We obtain substantially tighter prediction sets while maintaining desirable marginal guarantees by casting conformal prediction as a meta-learning paradigm.
We demonstrate the effectiveness of this approach across a number of few-shot classification and regression tasks in natural language processing, computer vision, and computational chemistry for drug discovery.
arXiv Detail & Related papers (2021-02-17T17:46:57Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
We propose a self-supervised representation learning method for sequence data, based on the intuition that useful representations of sequence data should exhibit a simple structure in the latent space.
We encourage this latent structure by maximizing an estimate of predictive information of latent feature sequences, which is the mutual information between past and future windows at each time step.
We demonstrate that our method recovers the latent space of noisy dynamical systems, extracts predictive features for forecasting tasks, and improves automatic speech recognition when used to pretrain the encoder on large amounts of unlabeled data.
arXiv Detail & Related papers (2020-10-07T03:34:01Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
Activation Relaxation (AR) is motivated by constructing the backpropagation gradient as the equilibrium point of a dynamical system.
Our algorithm converges rapidly and robustly to the correct backpropagation gradients, requires only a single type of computational unit, and can operate on arbitrary computation graphs.
arXiv Detail & Related papers (2020-09-11T11:56:34Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.