The (un)detectability of trajectories in pilot-wave theory
- URL: http://arxiv.org/abs/2503.07694v1
- Date: Mon, 10 Mar 2025 17:00:09 GMT
- Title: The (un)detectability of trajectories in pilot-wave theory
- Authors: Johannes Fankhauser,
- Abstract summary: Pilot wave theory endows particles with definite positions at all times governed by deterministic dynamics.<n>Individual particle trajectories are generically undetectable by experiment.<n>It is concluded that the puzzles arise from the absence of a coherent account of what quantum mechanical measurements signify.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pilot wave theory endows particles with definite positions at all times governed by deterministic dynamics. However, individual particle trajectories are generically undetectable by experiment. This idea might seem to be contested in light of two proposals: (1) So-called 'weak velocity measurements', allegedly detecting Bohmian trajectories by weakly probing a quantum system without essentially disturbing it, and (2) the so-called 'surrealistic' trajectories experiment which supposedly establishes a conflict between the 'actual' position of a particle and its position derived from pilot wave theory. Although both attempts shed light on the nature of Bohmian particles, neither constitute empirical or theoretical evidence in favour or against pilot wave theory. Both instances admit a straightforward standard quantum mechanical interpretation compatible with the predictions of Bohmian theories. It is concluded that the puzzles arise from the absence of a coherent account of what quantum mechanical measurements signify.
Related papers
- Einstein's 1927 gedanken experiment: how to complete it and measure the collapse time of a spatially spread photon [55.2480439325792]
Einstein discussed a gedanken experiment involving a single photon diffracted at an aperture and impinging on a screen.
He devised the example to support De Broglie's hypothesis of the pilot wave, and his own ideas on the incompleteness of the description of physical reality provided by Quantum Mechanics.
Partial realizations of Einstein's example have been performed, but the complete experiment has not been attempted (for good practical reasons) yet.
arXiv Detail & Related papers (2025-03-11T18:10:12Z) - Bohmian Mechanics fails to compute multi-time correlations [0.0]
Bohmian mechanics is a realistic, non-local theory of classical particle trajectories.<n>We set up a spatial version of the GHZ system with qubits realised as positional observables.
arXiv Detail & Related papers (2025-02-20T11:03:38Z) - Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Entangled in Spacetime [0.0]
The Delayed-Choice Quantum Eraser demonstrates the relationship between quantum measurement, wave-particle duality, and the temporal ordering of observations.
By utilizing the principles of quantum superposition, entanglement, and the non-local collapse of the wave function, we seek to rationalize the counterintuitive outcomes observed in the experiment.
arXiv Detail & Related papers (2024-09-04T00:57:23Z) - Towards a Deterministic Interpretation of Quantum Mechanics: Insights from Dynamical Systems [0.0]
This manuscript develops a deterministic dynamical system with local interactions.
The aggregate behavior of the trajectories are reminiscent of a quantum particle evolving under the Schr"odinger equation.
Results illustrate a deterministic alternative to probabilistic interpretations and aims to shed light on the transition from quantum to classical mechanics.
arXiv Detail & Related papers (2024-04-23T19:00:28Z) - Testing trajectory-based determinism via time probability distributions [44.99833362998488]
Bohmian mechanics (BM) has inherited more predictive power than quantum mechanics (QM)
We introduce a prescription for constructing a flight-time probability distribution within generic trajectory-equipped theories.
We derive probability distributions that are unreachable by QM.
arXiv Detail & Related papers (2024-04-15T11:36:38Z) - Testing Quantum Gravity using Pulsed Optomechanical Systems [13.650870855008112]
We consider the Schr"odinger-Newton (SN) theory and the Correlated Worldline (CWL) theory, and show that they can be distinguished from conventional quantum mechanics.
We find that discriminating between the theories will be very difficult until experimental control over low frequency quantum optomechanical systems is pushed further.
arXiv Detail & Related papers (2023-11-03T17:06:57Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - Classical model of delayed-choice quantum eraser [0.0]
Wheeler's delayed-choice experiment was conceived to illustrate the paradoxical nature of wave-particle duality in quantum mechanics.
In the experiment, quantum light can exhibit either wave-like interference patterns or particle-like anti-correlations.
A variant known as the quantum eraser uses entangled light to recover the lost interference in a seemingly nonlocal and retrocausal manner.
arXiv Detail & Related papers (2021-01-09T14:47:28Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - Bell's theorem for trajectories [62.997667081978825]
A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
arXiv Detail & Related papers (2020-01-03T01:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.