A Simple Approach to Constraint-Aware Imitation Learning with Application to Autonomous Racing
- URL: http://arxiv.org/abs/2503.07737v1
- Date: Mon, 10 Mar 2025 18:00:16 GMT
- Title: A Simple Approach to Constraint-Aware Imitation Learning with Application to Autonomous Racing
- Authors: Shengfan Cao, Eunhyek Joa, Francesco Borrelli,
- Abstract summary: We present a simple approach to incorporating safety into imitation learning (IL)<n>We empirically validate our approach on an autonomous racing task with both full-state and image feedback.
- Score: 4.755527819500743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Guaranteeing constraint satisfaction is challenging in imitation learning (IL), particularly in tasks that require operating near a system's handling limits. Traditional IL methods often struggle to enforce constraints, leading to suboptimal performance in high-precision tasks. In this paper, we present a simple approach to incorporating safety into the IL objective. Through simulations, we empirically validate our approach on an autonomous racing task with both full-state and image feedback, demonstrating improved constraint satisfaction and greater consistency in task performance compared to a baseline method.
Related papers
- DIAL: Distribution-Informed Adaptive Learning of Multi-Task Constraints for Safety-Critical Systems [13.93024489228903]
predefined constraint functions to ensure safety in complex real-world tasks, such as autonomous driving.<n>Recent research highlights the potential of leveraging pre-acquired task-agnostic knowledge to enhance both safety and sample efficiency in related tasks.<n>We propose a novel method to learn shared constraint distributions across multiple tasks.<n>Our approach identifies the shared constraints through imitation learning and then adapts to new tasks by adjusting risk levels within these learned distributions.
arXiv Detail & Related papers (2025-01-30T01:56:07Z) - Latent Safety-Constrained Policy Approach for Safe Offline Reinforcement Learning [7.888219789657414]
In safe offline reinforcement learning (RL), the objective is to develop a policy that maximizes cumulative rewards while strictly adhering to safety constraints.<n>We address these issues with a novel approach that begins by learning a conservatively safe policy through the use of Conditional Variational Autoencoders.<n>We frame this as a Constrained Reward-Return Maximization problem, wherein the policy aims to optimize rewards while complying with the inferred latent safety constraints.
arXiv Detail & Related papers (2024-12-11T22:00:07Z) - Exterior Penalty Policy Optimization with Penalty Metric Network under Constraints [52.37099916582462]
In Constrained Reinforcement Learning (CRL), agents explore the environment to learn the optimal policy while satisfying constraints.
We propose a theoretically guaranteed penalty function method, Exterior Penalty Policy Optimization (EPO), with adaptive penalties generated by a Penalty Metric Network (PMN)
PMN responds appropriately to varying degrees of constraint violations, enabling efficient constraint satisfaction and safe exploration.
arXiv Detail & Related papers (2024-07-22T10:57:32Z) - Safe and Balanced: A Framework for Constrained Multi-Objective Reinforcement Learning [26.244121960815907]
We propose a primal-based framework that orchestrates policy optimization between multi-objective learning and constraint adherence.
Our method employs a novel natural policy gradient manipulation method to optimize multiple RL objectives.
Empirically, our proposed method also outperforms prior state-of-the-art methods on challenging safe multi-objective reinforcement learning tasks.
arXiv Detail & Related papers (2024-05-26T00:42:10Z) - Uniformly Safe RL with Objective Suppression for Multi-Constraint Safety-Critical Applications [73.58451824894568]
The widely adopted CMDP model constrains the risks in expectation, which makes room for dangerous behaviors in long-tail states.
In safety-critical domains, such behaviors could lead to disastrous outcomes.
We propose Objective Suppression, a novel method that adaptively suppresses the task reward maximizing objectives according to a safety critic.
arXiv Detail & Related papers (2024-02-23T23:22:06Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Resilient Constrained Learning [94.27081585149836]
This paper presents a constrained learning approach that adapts the requirements while simultaneously solving the learning task.
We call this approach resilient constrained learning after the term used to describe ecological systems that adapt to disruptions by modifying their operation.
arXiv Detail & Related papers (2023-06-04T18:14:18Z) - Solving Continuous Control via Q-learning [54.05120662838286]
We show that a simple modification of deep Q-learning largely alleviates issues with actor-critic methods.
By combining bang-bang action discretization with value decomposition, framing single-agent control as cooperative multi-agent reinforcement learning (MARL), this simple critic-only approach matches performance of state-of-the-art continuous actor-critic methods.
arXiv Detail & Related papers (2022-10-22T22:55:50Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - Constrained Markov Decision Processes via Backward Value Functions [43.649330976089004]
We model the problem of learning with constraints as a Constrained Markov Decision Process.
A key contribution of our approach is to translate cumulative cost constraints into state-based constraints.
We provide theoretical guarantees under which the agent converges while ensuring safety over the course of training.
arXiv Detail & Related papers (2020-08-26T20:56:16Z) - Teaching the Old Dog New Tricks: Supervised Learning with Constraints [18.88930622054883]
Adding constraint support in Machine Learning has the potential to address outstanding issues in data-driven AI systems.
Existing approaches typically apply constrained optimization techniques to ML training, enforce constraint satisfaction by adjusting the model design, or use constraints to correct the output.
Here, we investigate a different, complementary, strategy based on "teaching" constraint satisfaction to a supervised ML method via the direct use of a state-of-the-art constraint solver.
arXiv Detail & Related papers (2020-02-25T09:47:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.