論文の概要: Evaluating LLaMA 3.2 for Software Vulnerability Detection
- arxiv url: http://arxiv.org/abs/2503.07770v1
- Date: Mon, 10 Mar 2025 18:47:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:46:36.652937
- Title: Evaluating LLaMA 3.2 for Software Vulnerability Detection
- Title(参考訳): ソフトウェア脆弱性検出のためのLLaMA 3.2の評価
- Authors: José Gonçalves, Miguel Silva, Bernardo Cabral, Tiago Dias, Eva Maia, Isabel Praça, Ricardo Severino, Luís Lino Ferreira,
- Abstract要約: 大規模な言語モデルであるLLaMA 3.2を微調整して脆弱性検出に使用するDiverseVulデータセットの洗練されたバージョンを提案する。
実験結果から, 前処理技術の使用により性能が向上したことが明らかとなった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Deep Learning (DL) has emerged as a powerful tool for vulnerability detection, often outperforming traditional solutions. However, developing effective DL models requires large amounts of real-world data, which can be difficult to obtain in sufficient quantities. To address this challenge, DiverseVul dataset has been curated as the largest dataset of vulnerable and non-vulnerable C/C++ functions extracted exclusively from real-world projects. Its goal is to provide high-quality, large-scale samples for training DL models. However, during our study several inconsistencies were identified in the raw dataset while applying pre-processing techniques, highlighting the need for a refined version. In this work, we present a refined version of DiverseVul dataset, which is used to fine-tune a large language model, LLaMA 3.2, for vulnerability detection. Experimental results show that the use of pre-processing techniques led to an improvement in performance, with the model achieving an F1-Score of 66%, a competitive result when compared to our baseline, which achieved a 47% F1-Score in software vulnerability detection.
- Abstract(参考訳): Deep Learning(DL)は脆弱性検出の強力なツールとして登場し、多くの場合、従来のソリューションよりも優れています。
しかし,有効なDLモデルの開発には大量の実世界のデータが必要であるため,十分な量のデータを得ることは困難である。
この課題に対処するため、DiverseVulデータセットは、現実世界のプロジェクトから排他的に抽出された脆弱性のある非脆弱性のC/C++関数の最大のデータセットとしてキュレーションされた。
その目標は、DLモデルをトレーニングするための高品質で大規模なサンプルを提供することです。
しかし,本研究では,前処理技術を適用しながら生のデータセットにいくつかの不整合を同定し,改良版の必要性を強調した。
本研究では,大規模な言語モデルであるLLaMA 3.2を微調整し,脆弱性検出に使用するDiverseVulデータセットの洗練されたバージョンを提案する。
実験結果から,ソフトウェア脆弱性検出ではF1スコアが47%,F1スコアが66%,F1スコアが66%であった。
関連論文リスト
- Data Quality Issues in Vulnerability Detection Datasets [1.6114012813668932]
脆弱性検出は、サイバーセキュリティのためのソフトウェアの潜在的な弱点を特定する上で、極めて難しいタスクである。
深層学習(DL)は検出プロセスの自動化に大きな進歩を遂げた。
この目的のためにDLモデルをトレーニングするために、多くのデータセットが作成されています。
しかし、これらのデータセットは、DLモデルの検出精度の低下につながるいくつかの問題に悩まされる。
論文 参考訳(メタデータ) (2024-10-08T13:31:29Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review(LFR)は、モデルの学習進捗に適応する動的トレーニングアプローチである。
LFRは、データブロック(トークンのシーケンス)にわたるモデルの学習パフォーマンスを追跡し、データセットの困難な領域を再検討する。
フルデータセットでトレーニングされたベースラインモデルと比較して、LFRは一貫して低いパープレキシティと高い精度を達成した。
論文 参考訳(メタデータ) (2024-09-10T00:59:18Z) - SAFE: Advancing Large Language Models in Leveraging Semantic and Syntactic Relationships for Software Vulnerability Detection [23.7268575752712]
ソフトウェア脆弱性(SV)は、安全クリティカルなセキュリティシステムにとって、一般的かつ重要な懸念事項として浮上している。
本稿では,SVDのソースコードデータから意味的・統語的関係を学習し,活用するための大規模言語モデルの能力を高める新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-02T00:49:02Z) - Outside the Comfort Zone: Analysing LLM Capabilities in Software Vulnerability Detection [9.652886240532741]
本稿では,ソースコードの脆弱性検出における大規模言語モデルの機能について,徹底的に解析する。
我々は6つの汎用LCMに対して脆弱性検出を特別に訓練した6つのオープンソースモデルの性能を評価する。
論文 参考訳(メタデータ) (2024-08-29T10:00:57Z) - Vulnerability Detection with Code Language Models: How Far Are We? [40.455600722638906]
PrimeVulは、脆弱性検出のためのコードLMのトレーニングと評価のための新しいデータセットである。
これは、人間の検証されたベンチマークに匹敵するラベルの精度を達成する、新しいデータラベリング技術を含んでいる。
また、厳密なデータ重複解消戦略と時系列データ分割戦略を実装して、データの漏洩問題を軽減している。
論文 参考訳(メタデータ) (2024-03-27T14:34:29Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - Are Sample-Efficient NLP Models More Robust? [90.54786862811183]
サンプル効率(所定のID精度に到達するために必要なデータ量)とロバスト性(OOD評価モデルの評価方法)の関係について検討する。
高いサンプル効率は、いくつかのモデリング介入やタスクにおいて、より平均的なOODロバスト性にのみ相関するが、それ以外は相関しない。
これらの結果から,サンプル効率向上のための汎用手法は,データセットとタスクに依存した汎用的なOODロバスト性向上をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2022-10-12T17:54:59Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
半教師付き学習(SSL)では、ラベル付きデータと同じ分布からラベル付きデータが引き出されることが一般的である。
サンプル重み付けによりラベルなしデータを選択的に活用することを提案する。
論文 参考訳(メタデータ) (2022-05-02T16:09:17Z) - Complementary Ensemble Learning [1.90365714903665]
我々は最先端のディープラーニングモデルの性能向上手法を考案した。
具体的には、最先端モデルの不確実性を補完できる補助モデルを訓練する。
論文 参考訳(メタデータ) (2021-11-09T03:23:05Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
言語支援の異なる特徴前処理手法を用いて特徴密度(FD)の有効性を検討した。
データセットの複雑さを推定することで、必要な実験の数を削減できると仮定する。
データセットの言語的複雑さの違いにより、言語的に支援された単語前処理の有効性を議論することが可能になる。
論文 参考訳(メタデータ) (2021-11-02T15:48:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。