Sublinear Algorithms for Wasserstein and Total Variation Distances: Applications to Fairness and Privacy Auditing
- URL: http://arxiv.org/abs/2503.07775v2
- Date: Wed, 18 Jun 2025 04:37:08 GMT
- Title: Sublinear Algorithms for Wasserstein and Total Variation Distances: Applications to Fairness and Privacy Auditing
- Authors: Debabrota Basu, Debarshi Chanda,
- Abstract summary: We propose a generic framework to learn the probability and cumulative distribution functions (PDFs and CDFs) of a sub-Weibull.<n>We compute mergeable summaries of distributions from the stream of samples while requiring only sublinear space.<n>Our algorithms significantly improves on the existing methods for distance estimation incurring super-linear time and linear space complexities.
- Score: 7.81603404636933
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Resource-efficiently computing representations of probability distributions and the distances between them while only having access to the samples is a fundamental and useful problem across mathematical sciences. In this paper, we propose a generic framework to learn the probability and cumulative distribution functions (PDFs and CDFs) of a sub-Weibull, i.e. almost any light- or heavy-tailed, distribution while the samples from it arrive in a stream. The idea is to reduce these problems into estimating the frequency of an \textit{appropriately chosen subset} of the support of a \textit{properly discretised distribution}. We leverage this reduction to compute mergeable summaries of distributions from the stream of samples while requiring only sublinear space relative to the number of observed samples. This allows us to estimate Wasserstein and Total Variation (TV) distances between any two distributions while samples arrive in streams and from multiple sources. Our algorithms significantly improves on the existing methods for distance estimation incurring super-linear time and linear space complexities, and further extend the mergeable summaries framework to continuous distributions with possibly infinite support. Our results are tight with respect to the existing lower bounds for bounded discrete distributions. In addition, we leverage our proposed estimators of Wasserstein and TV distances to tightly audit the fairness and privacy of algorithms. We empirically demonstrate the efficiency of proposed algorithms across synthetic and real-world datasets.
Related papers
- Instance-Optimal Uniformity Testing and Tracking [20.711670932098176]
We introduce the problem of uniformity tracking, whereby an algorithm is required to detect deviations from uniformity.<n>Our main contribution is a $operatornamepolylog(operatornameopt)$-competitive uniformity tracking algorithm.
arXiv Detail & Related papers (2025-08-04T17:23:00Z) - Learning local neighborhoods of non-Gaussian graphical models: A measure transport approach [0.3749861135832072]
We propose a scalable algorithm to infer the conditional independence relationships of each variable by exploiting the local Markov property.
The proposed method, named Localized Sparsity Identification for Non-Gaussian Distributions (L-SING), estimates the graph by using flexible classes of transport maps.
arXiv Detail & Related papers (2025-03-18T04:53:22Z) - An Improved Algorithm for Learning Drifting Discrete Distributions [2.2191203337341525]
We present a new adaptive algorithm for learning discrete distributions under distribution drift.
We observe a sequence of independent samples from a discrete distribution that is changing over time, and the goal is to estimate the current distribution.
To use more samples, we must resort to samples further in the past, and we incur a drift error due to the bias introduced by the change in distribution.
We present a novel adaptive algorithm that can solve this trade-off without any prior knowledge of the drift.
arXiv Detail & Related papers (2024-03-08T16:54:27Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Distributed Bayesian Estimation in Sensor Networks: Consensus on
Marginal Densities [15.038649101409804]
We derive a distributed provably-correct algorithm in the functional space of probability distributions over continuous variables.
We leverage these results to obtain new distributed estimators restricted to subsets of variables observed by individual agents.
This relates to applications such as cooperative localization and federated learning, where the data collected at any agent depends on a subset of all variables of interest.
arXiv Detail & Related papers (2023-12-02T21:10:06Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Approximating a RUM from Distributions on k-Slates [88.32814292632675]
We find a generalization-time algorithm that finds the RUM that best approximates the given distribution on average.
Our theoretical result can also be made practical: we obtain a that is effective and scales to real-world datasets.
arXiv Detail & Related papers (2023-05-22T17:43:34Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap is a computationally feasible algorithm to uncover low-dimensional structures in the Wasserstein space.
We show that LOT Wassmap attains correct embeddings and that the quality improves with increased sample size.
We also show how LOT Wassmap significantly reduces the computational cost when compared to algorithms that depend on pairwise distance computations.
arXiv Detail & Related papers (2023-02-14T22:12:16Z) - Unsupervised Learning of Sampling Distributions for Particle Filters [80.6716888175925]
We put forward four methods for learning sampling distributions from observed measurements.
Experiments demonstrate that learned sampling distributions exhibit better performance than designed, minimum-degeneracy sampling distributions.
arXiv Detail & Related papers (2023-02-02T15:50:21Z) - Wasserstein Distributionally Robust Optimization via Wasserstein
Barycenters [10.103413548140848]
We seek data-driven decisions which perform well under the most adverse distribution from a nominal distribution constructed from data samples within a certain distance of probability distributions.
We propose constructing the nominal distribution in Wasserstein distributionally robust optimization problems through the notion of Wasserstein barycenter as an aggregation of data samples from multiple sources.
arXiv Detail & Related papers (2022-03-23T02:03:47Z) - Super-resolution GANs of randomly-seeded fields [68.8204255655161]
We propose a novel super-resolution generative adversarial network (GAN) framework to estimate field quantities from random sparse sensors.
The algorithm exploits random sampling to provide incomplete views of the high-resolution underlying distributions.
The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distributions measurements, and particle image velocimetry data.
arXiv Detail & Related papers (2022-02-23T18:57:53Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
We propose DRE-infty, a divide-and-conquer approach to reduce Density ratio estimation (DRE) to a series of easier subproblems.
Inspired by Monte Carlo methods, we smoothly interpolate between the two distributions via an infinite continuum of intermediate bridge distributions.
We show that our approach performs well on downstream tasks such as mutual information estimation and energy-based modeling on complex, high-dimensional datasets.
arXiv Detail & Related papers (2021-11-22T06:26:29Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
Particle filtering is used to compute good nonlinear estimates of complex systems.
We show in simulations that the resulting particle filter yields good estimates in a wide range of scenarios.
arXiv Detail & Related papers (2021-10-06T16:58:34Z) - Efficient Discretizations of Optimal Transport [16.996068297291057]
We propose an algorithm for calculating discretizations with a given number of points for marginal distributions.
We prove bounds for our approximation and demonstrate performance on a wide range of problems.
arXiv Detail & Related papers (2021-02-16T04:31:52Z) - Learning High Dimensional Wasserstein Geodesics [55.086626708837635]
We propose a new formulation and learning strategy for computing the Wasserstein geodesic between two probability distributions in high dimensions.
By applying the method of Lagrange multipliers to the dynamic formulation of the optimal transport (OT) problem, we derive a minimax problem whose saddle point is the Wasserstein geodesic.
We then parametrize the functions by deep neural networks and design a sample based bidirectional learning algorithm for training.
arXiv Detail & Related papers (2021-02-05T04:25:28Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.