Instance-Optimal Uniformity Testing and Tracking
- URL: http://arxiv.org/abs/2508.02637v1
- Date: Mon, 04 Aug 2025 17:23:00 GMT
- Title: Instance-Optimal Uniformity Testing and Tracking
- Authors: Guy Blanc, Clément L. Canonne, Erik Waingarten,
- Abstract summary: We introduce the problem of uniformity tracking, whereby an algorithm is required to detect deviations from uniformity.<n>Our main contribution is a $operatornamepolylog(operatornameopt)$-competitive uniformity tracking algorithm.
- Score: 20.711670932098176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the uniformity testing task, an algorithm is provided with samples from an unknown probability distribution over a (known) finite domain, and must decide whether it is the uniform distribution, or, alternatively, if its total variation distance from uniform exceeds some input distance parameter. This question has received a significant amount of interest and its complexity is, by now, fully settled. Yet, we argue that it fails to capture many scenarios of interest, and that its very definition as a gap problem in terms of a prespecified distance may lead to suboptimal performance. To address these shortcomings, we introduce the problem of uniformity tracking, whereby an algorithm is required to detect deviations from uniformity (however they may manifest themselves) using as few samples as possible, and be competitive against an optimal algorithm knowing the distribution profile in hindsight. Our main contribution is a $\operatorname{polylog}(\operatorname{opt})$-competitive uniformity tracking algorithm. We obtain this result by leveraging new structural results on Poisson mixtures, which we believe to be of independent interest.
Related papers
- Sublinear Algorithms for Wasserstein and Total Variation Distances: Applications to Fairness and Privacy Auditing [7.81603404636933]
We propose a generic framework to learn the probability and cumulative distribution functions (PDFs and CDFs) of a sub-Weibull.<n>We compute mergeable summaries of distributions from the stream of samples while requiring only sublinear space.<n>Our algorithms significantly improves on the existing methods for distance estimation incurring super-linear time and linear space complexities.
arXiv Detail & Related papers (2025-03-10T18:57:48Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
Longtailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples.
Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance.
We propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space.
arXiv Detail & Related papers (2024-03-11T13:44:49Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Adversarially Robust Distributed Count Tracking via Partial Differential
Privacy [17.43748116766233]
We study the distributed tracking model, also known as distributed functional monitoring.
This model involves $k$ sites each receiving a stream of items and communicating with the central server.
For count tracking, it is known that there is a $sqrtk$ gap in communication between deterministic and randomized algorithms.
arXiv Detail & Related papers (2023-11-01T07:42:13Z) - Stability is Stable: Connections between Replicability, Privacy, and
Adaptive Generalization [26.4468964378511]
A replicable algorithm gives the same output with high probability when its randomness is fixed.
Using replicable algorithms for data analysis can facilitate the verification of published results.
We establish new connections and separations between replicability and standard notions of algorithmic stability.
arXiv Detail & Related papers (2023-03-22T21:35:50Z) - PAPAL: A Provable PArticle-based Primal-Dual ALgorithm for Mixed Nash Equilibrium [58.26573117273626]
We consider the non-AL equilibrium nonconptotic objective function in two-player zero-sum continuous games.
Our novel insights into the particle-based algorithms for continuous distribution strategies are presented.
arXiv Detail & Related papers (2023-03-02T05:08:15Z) - Optimal Algorithms for Stochastic Complementary Composite Minimization [55.26935605535377]
Inspired by regularization techniques in statistics and machine learning, we study complementary composite minimization.
We provide novel excess risk bounds, both in expectation and with high probability.
Our algorithms are nearly optimal, which we prove via novel lower complexity bounds for this class of problems.
arXiv Detail & Related papers (2022-11-03T12:40:24Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
This paper considers the problem of online clustering with bandit feedback.
It includes a novel stopping rule for sequential testing that circumvents the need to solve any NP-hard weighted clustering problem as its subroutines.
We show through extensive simulations on synthetic and real-world datasets that BOC's performance matches the lower boundally, and significantly outperforms a non-adaptive baseline algorithm.
arXiv Detail & Related papers (2022-02-09T06:05:05Z) - Distributed stochastic proximal algorithm with random reshuffling for
non-smooth finite-sum optimization [28.862321453597918]
Non-smooth finite-sum minimization is a fundamental problem in machine learning.
This paper develops a distributed proximal-gradient algorithm with random reshuffling to solve the problem.
arXiv Detail & Related papers (2021-11-06T07:29:55Z) - Semi-Discrete Optimal Transport: Hardness, Regularization and Numerical
Solution [8.465228064780748]
We prove that computing the Wasserstein distance between a discrete probability measure supported on two points is already #P-hard.
We introduce a distributionally robust dual optimal transport problem whose objective function is smoothed with the most adverse disturbance distributions.
We show that smoothing the dual objective function is equivalent to regularizing the primal objective function.
arXiv Detail & Related papers (2021-03-10T18:53:59Z) - Efficient Discretizations of Optimal Transport [16.996068297291057]
We propose an algorithm for calculating discretizations with a given number of points for marginal distributions.
We prove bounds for our approximation and demonstrate performance on a wide range of problems.
arXiv Detail & Related papers (2021-02-16T04:31:52Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.