RefactorBench: Evaluating Stateful Reasoning in Language Agents Through Code
- URL: http://arxiv.org/abs/2503.07832v1
- Date: Mon, 10 Mar 2025 20:23:24 GMT
- Title: RefactorBench: Evaluating Stateful Reasoning in Language Agents Through Code
- Authors: Dhruv Gautam, Spandan Garg, Jinu Jang, Neel Sundaresan, Roshanak Zilouchian Moghaddam,
- Abstract summary: We introduce RefactorBench, a benchmark consisting of 100 large handcrafted multi-file tasks in popular open-source repositories.<n> Baselines reveal that current LM agents struggle with simple compositional tasks, solving only 22% of tasks with base instructions.<n>By adapting a baseline agent to condition on representations of state, we achieve a 43.9% improvement in solving RefactorBench tasks.
- Score: 7.156224931977546
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in language model (LM) agents and function calling have enabled autonomous, feedback-driven systems to solve problems across various digital domains. To better understand the unique limitations of LM agents, we introduce RefactorBench, a benchmark consisting of 100 large handcrafted multi-file refactoring tasks in popular open-source repositories. Solving tasks within RefactorBench requires thorough exploration of dependencies across multiple files and strong adherence to relevant instructions. Every task is defined by 3 natural language instructions of varying specificity and is mutually exclusive, allowing for the creation of longer combined tasks on the same repository. Baselines on RefactorBench reveal that current LM agents struggle with simple compositional tasks, solving only 22% of tasks with base instructions, in contrast to a human developer with short time constraints solving 87%. Through trajectory analysis, we identify various unique failure modes of LM agents, and further explore the failure mode of tracking past actions. By adapting a baseline agent to condition on representations of state, we achieve a 43.9% improvement in solving RefactorBench tasks. We further extend our state-aware approach to encompass entire digital environments and outline potential directions for future research. RefactorBench aims to support the study of LM agents by providing a set of real-world, multi-hop tasks within the realm of code.
Related papers
- Multi-Mission Tool Bench: Assessing the Robustness of LLM based Agents through Related and Dynamic Missions [12.218102495632937]
Large language models (LLMs) demonstrate strong potential as agents for tool invocation due to their advanced comprehension and planning capabilities.
We propose the Multi-Mission Tool Bench. In the benchmark, each test case comprises multiple interrelated missions.
We also propose a novel method to evaluate the accuracy and efficiency of agent decisions with dynamic decision trees.
arXiv Detail & Related papers (2025-04-03T14:21:33Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions [72.56339136017759]
We introduce BigCodeBench, a benchmark that challenges Large Language Models (LLMs) to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained tasks.
Our evaluation shows that LLMs are not yet capable of following complex instructions to use function calls precisely, with scores up to 60%, significantly lower than the human performance of 97%.
We propose a natural-language-oriented variant of BigCodeBench, BigCodeBench-Instruct, that automatically transforms the original docstrings into short instructions only with essential information.
arXiv Detail & Related papers (2024-06-22T15:52:04Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - R-Eval: A Unified Toolkit for Evaluating Domain Knowledge of Retrieval Augmented Large Language Models [51.468732121824125]
Large language models have achieved remarkable success on general NLP tasks, but they may fall short for domain-specific problems.
Existing evaluation tools only provide a few baselines and evaluate them on various domains without mining the depth of domain knowledge.
In this paper, we address the challenges of evaluating RALLMs by introducing the R-Eval toolkit, a Python toolkit designed to streamline the evaluation of different RAGs.
arXiv Detail & Related papers (2024-06-17T15:59:49Z) - Class-Level Code Generation from Natural Language Using Iterative, Tool-Enhanced Reasoning over Repository [4.767858874370881]
We introduce RepoClassBench, a benchmark designed to rigorously evaluate LLMs in generating class-level code within real-world repositories.
RepoClassBench includes "Natural Language to Class generation" tasks across Java, Python & C# from a selection of repositories.
We introduce Retrieve-Repotools-Reflect (RRR), a novel approach that equips LLMs with static analysis tools to iteratively navigate & reason about repository-level context.
arXiv Detail & Related papers (2024-04-22T03:52:54Z) - TDAG: A Multi-Agent Framework based on Dynamic Task Decomposition and Agent Generation [41.21899915378596]
We propose a multi-agent framework based on dynamic Task Decomposition and Agent Generation (TDAG)
This framework dynamically decomposes complex tasks into smaller subtasks and assigns each to a specifically generated subagent.
ItineraryBench is designed to assess agents' abilities in memory, planning, and tool usage across tasks of varying complexity.
arXiv Detail & Related papers (2024-02-15T18:27:37Z) - Large Language Model based Multi-Agents: A Survey of Progress and Challenges [44.92286030322281]
Large Language Models (LLMs) have achieved remarkable success across a wide array of tasks.
Recently, based on the development of using one LLM as a single planning or decision-making agent, LLM-based multi-agent systems have achieved considerable progress in complex problem-solving and world simulation.
arXiv Detail & Related papers (2024-01-21T23:36:14Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Bench is a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks.
To evaluate both Large Language Models (LLMs) and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment.
arXiv Detail & Related papers (2023-11-16T12:03:21Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.