Predicting and Understanding College Student Mental Health with Interpretable Machine Learning
- URL: http://arxiv.org/abs/2503.08002v3
- Date: Tue, 10 Jun 2025 09:25:11 GMT
- Title: Predicting and Understanding College Student Mental Health with Interpretable Machine Learning
- Authors: Meghna Roy Chowdhury, Wei Xuan, Shreyas Sen, Yixue Zhao, Yi Ding,
- Abstract summary: This paper presents I-HOPE, the first Interpretable Hierarchical mOdel for Personalized mEntal health prediction.<n>I-HOPE is a two-stage hierarchical model that connects raw behavioral features to mental health status through five defined behavioral categories as interaction labels.<n>We evaluate I-HOPE on the College Experience Study, the longest longitudinal mobile sensing dataset. This dataset spans five years and captures data from both pre-pandemic periods and the COVID-19 pandemic.
- Score: 4.136180468780605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mental health issues among college students have reached critical levels, significantly impacting academic performance and overall wellbeing. Predicting and understanding mental health status among college students is challenging due to three main factors: the necessity for large-scale longitudinal datasets, the prevalence of black-box machine learning models lacking transparency, and the tendency of existing approaches to provide aggregated insights at the population level rather than individualized understanding. To tackle these challenges, this paper presents I-HOPE, the first Interpretable Hierarchical mOdel for Personalized mEntal health prediction. I-HOPE is a two-stage hierarchical model that connects raw behavioral features to mental health status through five defined behavioral categories as interaction labels. We evaluate I-HOPE on the College Experience Study, the longest longitudinal mobile sensing dataset. This dataset spans five years and captures data from both pre-pandemic periods and the COVID-19 pandemic. I-HOPE achieves a prediction accuracy of 91%, significantly surpassing the 60-70% accuracy of baseline methods. In addition, I-HOPE distills complex patterns into interpretable and individualized insights, enabling the future development of tailored interventions and improving mental health support. The code is available at https://github.com/roycmeghna/I-HOPE.
Related papers
- Early Detection of Mental Health Issues Using Social Media Posts [0.0]
Social media platforms, like Reddit, represent a rich source of user-generated content.<n>We propose a multi-modal deep learning framework that integrates linguistic and temporal features for early detection of mental health crises.
arXiv Detail & Related papers (2025-03-06T23:08:08Z) - Two-Stage Representation Learning for Analyzing Movement Behavior Dynamics in People Living with Dementia [44.39545678576284]
This study analyzes home activity data from individuals living with dementia by proposing a two-stage, self-supervised learning approach.<n>The first stage converts time-series activities into text sequences encoded by a pre-trained language model.<n>This PageRank vector captures latent state transitions, effectively compressing complex behaviour data into a succinct form.
arXiv Detail & Related papers (2025-02-13T10:57:25Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
This contribution statistically curates the training data to assess to what degree the physical characteristics of humans influence HAR performance.
We evaluate the performance of a state-of-the-art convolutional neural network on two HAR datasets that vary in the sensors, activities, and recording for time-series HAR.
arXiv Detail & Related papers (2023-01-19T12:33:50Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - Bias Reducing Multitask Learning on Mental Health Prediction [18.32551434711739]
There has been an increase in research in developing machine learning models for mental health detection or prediction.
In this work, we aim to perform a fairness analysis and implement a multi-task learning based bias mitigation method on anxiety prediction models.
Our analysis showed that our anxiety prediction base model introduced some bias with regards to age, income, ethnicity, and whether a participant is born in the U.S. or not.
arXiv Detail & Related papers (2022-08-07T02:28:32Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
Mental health conditions remain underdiagnosed even in countries with common access to advanced medical care.
One promising data source to help monitor human behavior is daily smartphone usage.
We study behavioral markers of daily mood using a recent dataset of mobile behaviors from adolescent populations at high risk of suicidal behaviors.
arXiv Detail & Related papers (2021-06-24T17:46:03Z) - Evaluating the performance of personal, social, health-related,
biomarker and genetic data for predicting an individuals future health using
machine learning: A longitudinal analysis [0.0]
The aim of the study is to apply a machine learning approach to identify the relative contribution of personal, social, health-related, biomarker and genetic data as predictors of future health in individuals.
Two machine learning approaches were used to build predictive models: deep learning via neural networks and XGBoost.
Results found that health-related measures had the strongest prediction of future health status, with genetic data performing poorly.
arXiv Detail & Related papers (2021-04-26T12:31:40Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Adapting Deep Learning Methods for Mental Health Prediction on Social
Media [10.102073937554488]
Mental health poses a significant challenge for an individual's well-being.
We tackle a challenge of detecting social media users' mental status through deep learning-based models.
In a binary classification task on predicting if a user suffers from one of nine different disorders, a hierarchical attention network outperforms previously set benchmarks for four of the disorders.
arXiv Detail & Related papers (2020-03-17T10:49:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.