Early Detection of Mental Health Issues Using Social Media Posts
- URL: http://arxiv.org/abs/2503.07653v1
- Date: Thu, 06 Mar 2025 23:08:08 GMT
- Title: Early Detection of Mental Health Issues Using Social Media Posts
- Authors: Qasim Bin Saeed, Ijaz Ahmed,
- Abstract summary: Social media platforms, like Reddit, represent a rich source of user-generated content.<n>We propose a multi-modal deep learning framework that integrates linguistic and temporal features for early detection of mental health crises.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing prevalence of mental health disorders, such as depression, anxiety, and bipolar disorder, calls for immediate need in developing tools for early detection and intervention. Social media platforms, like Reddit, represent a rich source of user-generated content, reflecting emotional and behavioral patterns. In this work, we propose a multi-modal deep learning framework that integrates linguistic and temporal features for early detection of mental health crises. Our approach is based on the method that utilizes a BiLSTM network both for text and temporal feature analysis, modeling sequential dependencies in a different manner, capturing contextual patterns quite well. This work includes a cross-modal attention approach that allows fusion of such outputs into context-aware classification of mental health conditions. The model was then trained and evaluated on a dataset of labeled Reddit posts preprocessed using text preprocessing, scaling of temporal features, and encoding of labels. Experimental results indicate that the proposed architecture performs better compared to traditional models with a validation accuracy of 74.55% and F1-Score of 0.7376. This study presents the importance of multi-modal learning for mental health detection and provides a baseline for further improvements by using more advanced attention mechanisms and other data modalities.
Related papers
- Innovative Framework for Early Estimation of Mental Disorder Scores to Enable Timely Interventions [0.9297614330263184]
An advanced multimodal deep learning system for the automated classification of PTSD and depression is presented in this paper.<n>The proposed method achieves classification accuracies of 92% for depression and 93% for PTSD, outperforming traditional unimodal approaches.
arXiv Detail & Related papers (2025-02-06T10:57:10Z) - Detecting Neurocognitive Disorders through Analyses of Topic Evolution and Cross-modal Consistency in Visual-Stimulated Narratives [84.03001845263]
Early detection of neurocognitive disorders (NCDs) is crucial for timely intervention and disease management.<n>Traditional narrative analysis often focuses on local indicators in microstructure, such as word usage and syntax.<n>We propose to investigate specific cognitive and linguistic challenges by analyzing topical shifts, temporal dynamics, and the coherence of narratives over time.
arXiv Detail & Related papers (2025-01-07T12:16:26Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - A Simple and Flexible Modeling for Mental Disorder Detection by Learning
from Clinical Questionnaires [0.2580765958706853]
We propose a novel approach that captures the semantic meanings directly from the text and compares them to symptom-related descriptions.
Our detailed analysis shows that the proposed model is effective at leveraging domain knowledge, transferable to other mental disorders, and providing interpretable detection results.
arXiv Detail & Related papers (2023-06-05T15:23:55Z) - Dynamic Graph Representation Learning for Depression Screening with
Transformer [13.551342607089184]
Social media platforms present research opportunities to investigate mental health and potentially detect instances of mental illness.
Existing depression detection methods are constrained due to the reliance on feature engineering and the lack of consideration for time-varying factors.
We propose ContrastEgo, which treats each user as a dynamic time-evolving attributed graph (ego-network)
We show that ContrastEgo significantly outperforms the state-of-the-art methods in terms of all the effectiveness metrics in various experimental settings.
arXiv Detail & Related papers (2023-05-10T20:34:40Z) - Exploring Hybrid and Ensemble Models for Multiclass Prediction of Mental
Health Status on Social Media [27.799032561722893]
We report on experiments aimed at predicting six conditions (anxiety, attention deficit hyperactivity disorder, bipolar disorder, post-traumatic stress disorder, depression, and psychological stress) from Reddit social media posts.
We explore and compare the performance of hybrid and ensemble models leveraging transformer-based architectures (BERT and RoBERTa) and BiLSTM neural networks trained on within-text distributions of a diverse set of linguistic features.
In addition, we conduct feature ablation experiments to investigate which types of features are most indicative of particular mental health conditions.
arXiv Detail & Related papers (2022-12-19T20:31:47Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z) - Pose-based Body Language Recognition for Emotion and Psychiatric Symptom
Interpretation [75.3147962600095]
We propose an automated framework for body language based emotion recognition starting from regular RGB videos.
In collaboration with psychologists, we extend the framework for psychiatric symptom prediction.
Because a specific application domain of the proposed framework may only supply a limited amount of data, the framework is designed to work on a small training set.
arXiv Detail & Related papers (2020-10-30T18:45:16Z) - Context-Aware Refinement Network Incorporating Structural Connectivity
Prior for Brain Midline Delineation [50.868845400939314]
We propose a context-aware refinement network (CAR-Net) to refine and integrate the feature pyramid representation generated by the UNet.
For keeping the structural connectivity of the brain midline, we introduce a novel connectivity regular loss.
The proposed method requires fewer parameters and outperforms three state-of-the-art methods in terms of four evaluation metrics.
arXiv Detail & Related papers (2020-07-10T14:01:20Z) - Adapting Deep Learning Methods for Mental Health Prediction on Social
Media [10.102073937554488]
Mental health poses a significant challenge for an individual's well-being.
We tackle a challenge of detecting social media users' mental status through deep learning-based models.
In a binary classification task on predicting if a user suffers from one of nine different disorders, a hierarchical attention network outperforms previously set benchmarks for four of the disorders.
arXiv Detail & Related papers (2020-03-17T10:49:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.