Adapting Deep Learning Methods for Mental Health Prediction on Social
Media
- URL: http://arxiv.org/abs/2003.07634v1
- Date: Tue, 17 Mar 2020 10:49:03 GMT
- Title: Adapting Deep Learning Methods for Mental Health Prediction on Social
Media
- Authors: Ivan Sekuli\'c and Michael Strube
- Abstract summary: Mental health poses a significant challenge for an individual's well-being.
We tackle a challenge of detecting social media users' mental status through deep learning-based models.
In a binary classification task on predicting if a user suffers from one of nine different disorders, a hierarchical attention network outperforms previously set benchmarks for four of the disorders.
- Score: 10.102073937554488
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Mental health poses a significant challenge for an individual's well-being.
Text analysis of rich resources, like social media, can contribute to deeper
understanding of illnesses and provide means for their early detection. We
tackle a challenge of detecting social media users' mental status through deep
learning-based models, moving away from traditional approaches to the task. In
a binary classification task on predicting if a user suffers from one of nine
different disorders, a hierarchical attention network outperforms previously
set benchmarks for four of the disorders. Furthermore, we explore the
limitations of our model and analyze phrases relevant for classification by
inspecting the model's word-level attention weights.
Related papers
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - Early Detection of Depression and Eating Disorders in Spanish: UNSL at
MentalRiskES 2023 [1.0878040851637998]
MentalRiskES is a novel challenge that proposes to solve problems related to early risk detection for the Spanish language.
The objective is to detect, as soon as possible, Telegram users who show signs of mental disorders considering different tasks.
arXiv Detail & Related papers (2023-10-30T20:38:31Z) - Explainable Depression Symptom Detection in Social Media [2.677715367737641]
We propose using transformer-based architectures to detect and explain the appearance of depressive symptom markers in the users' writings.
Our natural language explanations enable clinicians to interpret the models' decisions based on validated symptoms.
arXiv Detail & Related papers (2023-10-20T17:05:27Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - A Simple and Flexible Modeling for Mental Disorder Detection by Learning
from Clinical Questionnaires [0.2580765958706853]
We propose a novel approach that captures the semantic meanings directly from the text and compares them to symptom-related descriptions.
Our detailed analysis shows that the proposed model is effective at leveraging domain knowledge, transferable to other mental disorders, and providing interpretable detection results.
arXiv Detail & Related papers (2023-06-05T15:23:55Z) - Predicting mental health using social media: A roadmap for future
development [0.0]
Mental disorders such as depression and suicidal ideation affect more than 300 million people over the world.
On social media, mental disorder symptoms can be observed, and automated approaches are increasingly capable of detecting them.
This research offers a roadmap for analysis, where mental state detection can be based on machine learning techniques.
arXiv Detail & Related papers (2023-01-25T08:08:29Z) - Multi-task Learning for Personal Health Mention Detection on Social
Media [70.23889100356091]
This research employs a multitask learning framework to leverage available annotated data to improve the performance on the main task.
We focus on incorporating emotional information into our target task by using emotion detection as an auxiliary task.
arXiv Detail & Related papers (2022-12-09T23:49:00Z) - Few-Shot Meta Learning for Recognizing Facial Phenotypes of Genetic
Disorders [55.41644538483948]
Automated classification and similarity retrieval aid physicians in decision-making to diagnose possible genetic conditions as early as possible.
Previous work has addressed the problem as a classification problem and used deep learning methods.
In this study, we used a facial recognition model trained on a large corpus of healthy individuals as a pre-task and transferred it to facial phenotype recognition.
arXiv Detail & Related papers (2022-10-23T11:52:57Z) - Bias Reducing Multitask Learning on Mental Health Prediction [18.32551434711739]
There has been an increase in research in developing machine learning models for mental health detection or prediction.
In this work, we aim to perform a fairness analysis and implement a multi-task learning based bias mitigation method on anxiety prediction models.
Our analysis showed that our anxiety prediction base model introduced some bias with regards to age, income, ethnicity, and whether a participant is born in the U.S. or not.
arXiv Detail & Related papers (2022-08-07T02:28:32Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
symptom checking systems inquire users for their symptoms and perform a rapid and affordable medical assessment of their condition.
We propose a new approach based on the supervised learning of neural models with logic regularization.
Our experiments show that the proposed approach outperforms the best existing methods in the accuracy of diagnosis when the number of diagnoses and symptoms is large.
arXiv Detail & Related papers (2022-06-02T07:57:17Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.