Evidential Uncertainty Probes for Graph Neural Networks
- URL: http://arxiv.org/abs/2503.08097v1
- Date: Tue, 11 Mar 2025 07:00:54 GMT
- Title: Evidential Uncertainty Probes for Graph Neural Networks
- Authors: Linlin Yu, Kangshuo Li, Pritom Kumar Saha, Yifei Lou, Feng Chen,
- Abstract summary: We propose a plug-and-play framework for uncertainty quantification in Graph Neural Networks (GNNs)<n>Our Evidential Probing Network (EPN) uses a lightweight Multi-Layer-Perceptron (MLP) head to extract evidence from learned representations.<n>EPN-reg achieves state-of-the-art performance in accurate and efficient uncertainty quantification, making it suitable for real-world deployment.
- Score: 3.5169632430086315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate quantification of both aleatoric and epistemic uncertainties is essential when deploying Graph Neural Networks (GNNs) in high-stakes applications such as drug discovery and financial fraud detection, where reliable predictions are critical. Although Evidential Deep Learning (EDL) efficiently quantifies uncertainty using a Dirichlet distribution over predictive probabilities, existing EDL-based GNN (EGNN) models require modifications to the network architecture and retraining, failing to take advantage of pre-trained models. We propose a plug-and-play framework for uncertainty quantification in GNNs that works with pre-trained models without the need for retraining. Our Evidential Probing Network (EPN) uses a lightweight Multi-Layer-Perceptron (MLP) head to extract evidence from learned representations, allowing efficient integration with various GNN architectures. We further introduce evidence-based regularization techniques, referred to as EPN-reg, to enhance the estimation of epistemic uncertainty with theoretical justifications. Extensive experiments demonstrate that the proposed EPN-reg achieves state-of-the-art performance in accurate and efficient uncertainty quantification, making it suitable for real-world deployment.
Related papers
- Probabilistic Neural Networks (PNNs) with t-Distributed Outputs: Adaptive Prediction Intervals Beyond Gaussian Assumptions [2.77390041716769]
Probabilistic neural networks (PNNs) produce output distributions, enabling the construction of prediction intervals.
We propose t-Distributed Neural Networks (TDistNNs), which generate t-distributed outputs, parameterized by location, scale, and degrees of freedom.
We show that TDistNNs consistently produce narrower prediction intervals than Gaussian-based PNNs while maintaining proper coverage.
arXiv Detail & Related papers (2025-03-16T04:47:48Z) - Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
We introduce the Positional Graph Quantile Neural Network (PE-GQNN), a novel method that integrates PE-GNNs, Quantile Neural Networks, and recalibration techniques in a fully nonparametric framework.
Experiments on benchmark datasets demonstrate that PE-GQNN significantly outperforms existing state-of-the-art methods in both predictive accuracy and uncertainty quantification.
arXiv Detail & Related papers (2024-09-27T16:02:12Z) - Uncertainty in Graph Neural Networks: A Survey [47.785948021510535]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.<n>However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.<n>This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - Uncertainty Quantification in Multivariable Regression for Material Property Prediction with Bayesian Neural Networks [37.69303106863453]
We introduce an approach for uncertainty quantification (UQ) within physics-informed BNNs.
We present case studies for predicting the creep rupture life of steel alloys.
The most promising framework for creep life prediction is BNNs based on Markov Chain Monte Carlo approximation of the posterior distribution of network parameters.
arXiv Detail & Related papers (2023-11-04T19:40:16Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - CARE: Certifiably Robust Learning with Reasoning via Variational
Inference [26.210129662748862]
We propose a certifiably robust learning with reasoning pipeline (CARE)
CARE achieves significantly higher certified robustness compared with the state-of-the-art baselines.
We additionally conducted different ablation studies to demonstrate the empirical robustness of CARE and the effectiveness of different knowledge integration.
arXiv Detail & Related papers (2022-09-12T07:15:52Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
A new approach with uncertainty-aware regression-based neural networks (NNs) shows promise over traditional deterministic methods and typical Bayesian NNs.
We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a quantification rather than an exact uncertainty.
arXiv Detail & Related papers (2022-05-20T10:10:32Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Sketching Curvature for Efficient Out-of-Distribution Detection for Deep
Neural Networks [32.629801680158685]
Sketching Curvature of OoD Detection (SCOD) is an architecture-agnostic framework for equipping trained Deep Neural Networks with task-relevant uncertainty estimates.
We demonstrate that SCOD achieves comparable or better OoD detection performance with lower computational burden relative to existing baselines.
arXiv Detail & Related papers (2021-02-24T21:34:40Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
We study how neural networks trained by gradient descent extrapolate what they learn outside the support of the training distribution.
Graph Neural Networks (GNNs) have shown some success in more complex tasks.
arXiv Detail & Related papers (2020-09-24T17:48:59Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
We propose a unified framework for adaptive connection sampling in graph neural networks (GNNs)
The proposed framework not only alleviates over-smoothing and over-fitting tendencies of deep GNNs, but also enables learning with uncertainty in graph analytic tasks with GNNs.
arXiv Detail & Related papers (2020-06-07T07:06:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.