Sketching Curvature for Efficient Out-of-Distribution Detection for Deep
Neural Networks
- URL: http://arxiv.org/abs/2102.12567v1
- Date: Wed, 24 Feb 2021 21:34:40 GMT
- Title: Sketching Curvature for Efficient Out-of-Distribution Detection for Deep
Neural Networks
- Authors: Apoorva Sharma and Navid Azizan and Marco Pavone
- Abstract summary: Sketching Curvature of OoD Detection (SCOD) is an architecture-agnostic framework for equipping trained Deep Neural Networks with task-relevant uncertainty estimates.
We demonstrate that SCOD achieves comparable or better OoD detection performance with lower computational burden relative to existing baselines.
- Score: 32.629801680158685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In order to safely deploy Deep Neural Networks (DNNs) within the perception
pipelines of real-time decision making systems, there is a need for safeguards
that can detect out-of-training-distribution (OoD) inputs both efficiently and
accurately. Building on recent work leveraging the local curvature of DNNs to
reason about epistemic uncertainty, we propose Sketching Curvature of OoD
Detection (SCOD), an architecture-agnostic framework for equipping any trained
DNN with a task-relevant epistemic uncertainty estimate. Offline, given a
trained model and its training data, SCOD employs tools from matrix sketching
to tractably compute a low-rank approximation of the Fisher information matrix,
which characterizes which directions in the weight space are most influential
on the predictions over the training data. Online, we estimate uncertainty by
measuring how much perturbations orthogonal to these directions can alter
predictions at a new test input. We apply SCOD to pre-trained networks of
varying architectures on several tasks, ranging from regression to
classification. We demonstrate that SCOD achieves comparable or better OoD
detection performance with lower computational burden relative to existing
baselines.
Related papers
- Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
We introduce the Positional Graph Quantile Neural Network (PE-GQNN), a novel method that integrates PE-GNNs, Quantile Neural Networks, and recalibration techniques in a fully nonparametric framework.
Experiments on benchmark datasets demonstrate that PE-GQNN significantly outperforms existing state-of-the-art methods in both predictive accuracy and uncertainty quantification.
arXiv Detail & Related papers (2024-09-27T16:02:12Z) - Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
Anomaly detection (AD) is increasingly recognized as a key component for ensuring the resilience of future communication systems.
This work considers AD in network flows using incomplete measurements.
We propose a novel block-successive convex approximation algorithm based on a regularized model-fitting objective.
Inspired by Bayesian approaches, we extend the model architecture to perform online adaptation to per-flow and per-time-step statistics.
arXiv Detail & Related papers (2024-09-17T19:59:57Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Window-Based Distribution Shift Detection for Deep Neural Networks [21.73028341299301]
We study the case of monitoring the healthy operation of a deep neural network (DNN) receiving a stream of data.
Using selective prediction principles, we propose a distribution deviation detection method for DNNs.
Our novel detection method performs on-par or better than the state-of-the-art, while consuming substantially lower time.
arXiv Detail & Related papers (2022-10-19T21:27:25Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
We show that Bayesian deep learning models on certain occasions marginally outperform conventional neural networks.
Preliminary investigations indicate the potential inherent role of bias due to choices of initialisation, architecture or activation functions.
arXiv Detail & Related papers (2020-09-03T16:58:15Z) - Increasing Trustworthiness of Deep Neural Networks via Accuracy
Monitoring [20.456742449675904]
Inference accuracy of deep neural networks (DNNs) is a crucial performance metric, but can vary greatly in practice subject to actual test datasets.
This has raised significant concerns with trustworthiness of DNNs, especially in safety-critical applications.
We propose a neural network-based accuracy monitor model, which only takes the deployed DNN's softmax probability output as its input.
arXiv Detail & Related papers (2020-07-03T03:09:36Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
Recurrent neural networks (RNNs) are instrumental in modelling sequential and time-series data.
Existing approaches for uncertainty quantification in RNNs are based predominantly on Bayesian methods.
We develop a frequentist alternative that: (a) does not interfere with model training or compromise its accuracy, (b) applies to any RNN architecture, and (c) provides theoretical coverage guarantees on the estimated uncertainty intervals.
arXiv Detail & Related papers (2020-06-20T22:45:32Z) - NADS: Neural Architecture Distribution Search for Uncertainty Awareness [79.18710225716791]
Machine learning (ML) systems often encounter Out-of-Distribution (OoD) errors when dealing with testing data coming from a distribution different from training data.
Existing OoD detection approaches are prone to errors and even sometimes assign higher likelihoods to OoD samples.
We propose Neural Architecture Distribution Search (NADS) to identify common building blocks among all uncertainty-aware architectures.
arXiv Detail & Related papers (2020-06-11T17:39:07Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.