論文の概要: HOTFormerLoc: Hierarchical Octree Transformer for Versatile Lidar Place Recognition Across Ground and Aerial Views
- arxiv url: http://arxiv.org/abs/2503.08140v2
- Date: Fri, 21 Mar 2025 07:00:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:52:55.201618
- Title: HOTFormerLoc: Hierarchical Octree Transformer for Versatile Lidar Place Recognition Across Ground and Aerial Views
- Title(参考訳): HOTFormerLoc:地上・航空界における垂直ライダー位置認識のための階層型Octoree変換器
- Authors: Ethan Griffiths, Maryam Haghighat, Simon Denman, Clinton Fookes, Milad Ramezani,
- Abstract要約: 大規模3次元位置認識のための新規で汎用的な階層型OctoreeベースのTransformerであるHOTFormerLocを提案する。
粒度にまたがる空間的特徴と意味的特徴をキャプチャするオクツリーに基づくマルチスケールアテンション機構を提案する。
CS-Wild-Placesは、密林で捉えた空中および地上のライダースキャンの点雲データを含む、新しい3次元オープンソースデータセットである。
- 参考スコア(独自算出の注目度): 30.77381516091565
- License:
- Abstract: We present HOTFormerLoc, a novel and versatile Hierarchical Octree-based TransFormer, for large-scale 3D place recognition in both ground-to-ground and ground-to-aerial scenarios across urban and forest environments. We propose an octree-based multi-scale attention mechanism that captures spatial and semantic features across granularities. To address the variable density of point distributions from spinning lidar, we present cylindrical octree attention windows to reflect the underlying distribution during attention. We introduce relay tokens to enable efficient global-local interactions and multi-scale representation learning at reduced computational cost. Our pyramid attentional pooling then synthesises a robust global descriptor for end-to-end place recognition in challenging environments. In addition, we introduce CS-Wild-Places, a novel 3D cross-source dataset featuring point cloud data from aerial and ground lidar scans captured in dense forests. Point clouds in CS-Wild-Places contain representational gaps and distinctive attributes such as varying point densities and noise patterns, making it a challenging benchmark for cross-view localisation in the wild. HOTFormerLoc achieves a top-1 average recall improvement of 5.5% - 11.5% on the CS-Wild-Places benchmark. Furthermore, it consistently outperforms SOTA 3D place recognition methods, with an average performance gain of 4.9% on well-established urban and forest datasets. The code and CS-Wild-Places benchmark is available at https://csiro-robotics.github.io/HOTFormerLoc.
- Abstract(参考訳): HOTFormerLocは,都市・森林環境における地上・地上・地上双方の大規模3次元位置認識のための,新規で汎用的な階層型オクタリートランスフォーマーである。
粒度にまたがる空間的特徴と意味的特徴をキャプチャするオクツリーに基づくマルチスケールアテンション機構を提案する。
回転ライダーからの点分布の変動密度に対処するため,注目時の下方分布を反映した円筒形のオクツリーアテンションウインドウを提案する。
我々は,効率的なグローバルローカルインタラクションを実現するためのリレートークンを導入し,計算コストを削減したマルチスケール表現学習を行う。
我々のピラミッド注意プールは、挑戦的な環境におけるエンドツーエンドの場所認識のための堅牢なグローバル記述子を合成する。
CS-Wild-Placesは,密林で捉えた空中および地上のライダースキャンの点雲データを含む,新しい3次元オープンソースデータセットである。
CS-Wild-Places の点雲は、様々な点密度やノイズパターンのような表現的ギャップと特徴的な特性を含んでおり、野生におけるクロスビューローカライゼーションの挑戦的なベンチマークとなっている。
HOTFormerLocはCS-Wild-Placesベンチマークで5.5%から11.5%に改善された。
さらに、SOTAの3D位置認識法を一貫して上回り、よく確立された都市や森林のデータセットでは平均4.9%の性能向上を達成している。
CS-Wild-Placesベンチマークはhttps://csiro-robotics.github.io/HOTFormerLocで公開されている。
関連論文リスト
- GSPR: Multimodal Place Recognition Using 3D Gaussian Splatting for Autonomous Driving [9.023864430027333]
我々はGPSRと呼ばれる3次元ガウススプラッティングに基づくマルチモーダル位置認識ネットワークを提案する。
マルチビューRGB画像とLiDAR点雲を時間的に統一されたシーン表現とMultimodal Gaussian Splattingを明示的に組み合わせている。
提案手法は,多視点カメラとLiDARの相補的強度を有効活用し,ソタ位置認識性能を向上し,ソタ位置認識性能を向上する。
論文 参考訳(メタデータ) (2024-10-01T00:43:45Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
従来の3Dネットワークは主に局所幾何学的詳細に焦点を当て、局所幾何学間の位相構造を無視する。
そこで本稿では,大規模画像上においてよく訓練されたトランスフォーマーから前駆体を抽出する,新しい先駆体蒸留法を提案する。
PointDA-10とSim-to-Realデータセットの実験は、提案手法が点クラウド分類におけるUDAの最先端性能を一貫して達成していることを検証する。
論文 参考訳(メタデータ) (2024-07-26T06:29:09Z) - Leveraging Swin Transformer for Local-to-Global Weakly Supervised
Semantic Segmentation [12.103012959947055]
本研究では、初期シードCAMの精度を高めるために「SWTformer」を提案することで、Swin Transformerの使用について検討する。
SWTformer-V1は、精度0.98%のmAPを実現し、最先端モデルより優れている。
SWTformer-V2は、追加情報を抽出するためにマルチスケールの機能融合機構を組み込んでいる。
論文 参考訳(メタデータ) (2024-01-31T13:41:17Z) - WildScenes: A Benchmark for 2D and 3D Semantic Segmentation in Large-scale Natural Environments [33.25040383298019]
$WildScenes$は、高解像度の2Dイメージと高密度の3D LiDARポイントクラウドで構成されるバイモーダルベンチマークデータセットである。
データは軌道中心であり、正確なローカライゼーションとグローバルに整列した点雲がある。
我々の3Dセマンティックラベルは、人間の注釈付き2Dラベルを複数のビューから3Dポイントクラウドシーケンスに転送する効率的で自動化されたプロセスによって得られる。
論文 参考訳(メタデータ) (2023-12-23T22:27:40Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
この作業にトランスフォーマーをセットし、それらを形状分類と部分およびシーンセグメンテーションのための階層的なフレームワークに組み込む。
また、各イテレーションにおけるサンプリングとグループ化を活用して、効率的でダイナミックなグローバルなクロスアテンションを計算します。
提案した階層モデルは,最先端の形状分類を平均精度で達成し,従来のセグメンテーション法と同等の結果を得る。
論文 参考訳(メタデータ) (2022-07-31T21:39:15Z) - SphereVLAD++: Attention-based and Signal-enhanced Viewpoint Invariant
Descriptor [6.326554177747699]
SphereVLAD++ は注目度が高められた視点不変位置認識手法である。
SphereVLAD++は、小さな視点や完全に逆の視点差の下で、最先端の3D位置認識手法をすべて上回ることを示す。
論文 参考訳(メタデータ) (2022-07-06T20:32:43Z) - Stratified Transformer for 3D Point Cloud Segmentation [89.9698499437732]
Stratified Transformerは、長距離コンテキストをキャプチャし、強力な一般化能力と高性能を示す。
不規則な点配置によって引き起こされる課題に対処するために,局所情報を集約する第1層点埋め込みを提案する。
S3DIS, ScanNetv2およびShapeNetPartデータセットにおける本手法の有効性と優位性を示す実験を行った。
論文 参考訳(メタデータ) (2022-03-28T05:35:16Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
我々はRandLA-Netを紹介した。RandLA-Netは、大規模ポイントクラウドのポイントごとの意味を推論する、効率的で軽量なニューラルネットワークアーキテクチャである。
我々のアプローチの鍵は、より複雑な点選択アプローチではなく、ランダムな点サンプリングを使用することである。
我々のRandLA-Netは、既存のアプローチよりも最大200倍高速な1回のパスで100万ポイントを処理できます。
論文 参考訳(メタデータ) (2021-07-06T05:08:34Z) - DH3D: Deep Hierarchical 3D Descriptors for Robust Large-Scale 6DoF
Relocalization [56.15308829924527]
生の3D点から直接3次元特徴の検出と記述を共同で学習するシームズネットワークを提案する。
3次元キーポイントを検出するために,局所的な記述子の識別性を教師なしで予測する。
各種ベンチマーク実験により,本手法はグローバルポイントクラウド検索とローカルポイントクラウド登録の両面で競合する結果が得られた。
論文 参考訳(メタデータ) (2020-07-17T20:21:22Z) - A Nearest Neighbor Network to Extract Digital Terrain Models from 3D
Point Clouds [1.6249267147413524]
本稿では,3Dポイントのクラウド上で動作し,エンド・ツー・エンドのアプローチを用いてシーンの基盤となるDTMを推定するアルゴリズムを提案する。
我々のモデルは近隣情報を学習し、これをポイントワイドでブロックワイドなグローバルな特徴とシームレスに統合する。
論文 参考訳(メタデータ) (2020-05-21T15:54:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。