A Framework for Reducing the Complexity of Geometric Vision Problems and its Application to Two-View Triangulation with Approximation Bounds
- URL: http://arxiv.org/abs/2503.08142v1
- Date: Tue, 11 Mar 2025 08:00:51 GMT
- Title: A Framework for Reducing the Complexity of Geometric Vision Problems and its Application to Two-View Triangulation with Approximation Bounds
- Authors: Felix Rydell, Georg Bökman, Fredrik Kahl, Kathlén Kohn,
- Abstract summary: Triangulation is the task of estimating a 3D point from noisy 2D projections across multiple images.<n>We present a new framework for reducing the computational complexity of geometric vision problems through targeted reweighting of the cost functions used to minimize reprojection errors.<n>Although this work focuses on two-view triangulation, the framework generalizes to other geometric vision problems.
- Score: 14.419727000332717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a new framework for reducing the computational complexity of geometric vision problems through targeted reweighting of the cost functions used to minimize reprojection errors. Triangulation - the task of estimating a 3D point from noisy 2D projections across multiple images - is a fundamental problem in multiview geometry and Structure-from-Motion (SfM) pipelines. We apply our framework to the two-view case and demonstrate that optimal triangulation, which requires solving a univariate polynomial of degree six, can be simplified through cost function reweighting reducing the polynomial degree to two. This reweighting yields a closed-form solution while preserving strong geometric accuracy. We derive optimal weighting strategies, establish theoretical bounds on the approximation error, and provide experimental results on real data demonstrating the effectiveness of the proposed approach compared to standard methods. Although this work focuses on two-view triangulation, the framework generalizes to other geometric vision problems.
Related papers
- Differentiable Convex Polyhedra Optimization from Multi-view Images [29.653374825428614]
This paper presents a novel approach for the differentiable rendering of convex polyhedra.
It addresses the limitations of recent methods that rely on implicit field supervision.
arXiv Detail & Related papers (2024-07-22T14:53:29Z) - 360 Layout Estimation via Orthogonal Planes Disentanglement and Multi-view Geometric Consistency Perception [56.84921040837699]
Existing panoramic layout estimation solutions tend to recover room boundaries from a vertically compressed sequence, yielding imprecise results.
We propose an orthogonal plane disentanglement network (termed DOPNet) to distinguish ambiguous semantics.
We also present an unsupervised adaptation technique tailored for horizon-depth and ratio representations.
Our solution outperforms other SoTA models on both monocular layout estimation and multi-view layout estimation tasks.
arXiv Detail & Related papers (2023-12-26T12:16:03Z) - Practical solutions to the relative pose of three calibrated cameras [59.0302033761239]
We study the challenging problem of estimating the relative pose of three calibrated cameras from four point correspondences.
We propose novel efficient solutions to this problem that are based on the simple idea of using four correspondences to estimate an approximate geometry of the first two views.
arXiv Detail & Related papers (2023-03-28T15:50:48Z) - Deep Learning Assisted Optimization for 3D Reconstruction from Single 2D
Line Drawings [13.532686360047574]
We propose to train deep neural networks to detect pairwise relationships among geometric entities in 3D objects.
Experiments on a large dataset of CAD models show that, by leveraging deep learning in a geometric constraint solving pipeline, the success rate of optimization-based 3D reconstruction can be significantly improved.
arXiv Detail & Related papers (2022-09-06T17:59:11Z) - Relative Pose from SIFT Features [50.81749304115036]
We derive a new linear constraint relating the unknown elements of the fundamental matrix and the orientation and scale.
The proposed constraint is tested on a number of problems in a synthetic environment and on publicly available real-world datasets on more than 80000 image pairs.
arXiv Detail & Related papers (2022-03-15T14:16:39Z) - A unifying framework for $n$-dimensional quasi-conformal mappings [2.064612766965483]
We develop a unifying framework for computing $n$-dimensional quasi-conformal mappings.
More specifically, we propose a variational model that integrates quasi-conformal distortion, volumetric distortion, landmark correspondence, intensity mismatch and volume prior information.
arXiv Detail & Related papers (2021-10-20T09:04:41Z) - Robust Extrinsic Symmetry Estimation in 3D Point Clouds [4.416484585765027]
Detecting the reflection symmetry plane of an object represented by a 3D point cloud is a fundamental problem in 3D computer vision and geometry processing.
We propose a statistical estimator-based approach for the plane of reflection symmetry that is robust to outliers and missing parts.
arXiv Detail & Related papers (2021-09-21T03:09:51Z) - Multi-view 3D Reconstruction of a Texture-less Smooth Surface of Unknown
Generic Reflectance [86.05191217004415]
Multi-view reconstruction of texture-less objects with unknown surface reflectance is a challenging task.
This paper proposes a simple and robust solution to this problem based on a co-light scanner.
arXiv Detail & Related papers (2021-05-25T01:28:54Z) - An End-to-End Framework for Molecular Conformation Generation via
Bilevel Programming [71.82571553927619]
We propose an end-to-end solution for molecular conformation prediction called ConfVAE.
Specifically, the molecular graph is first encoded in a latent space, and then the 3D structures are generated by solving a principled bilevel optimization program.
arXiv Detail & Related papers (2021-05-15T15:22:29Z) - Self-supervised Geometric Perception [96.89966337518854]
Self-supervised geometric perception is a framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels.
We show that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
arXiv Detail & Related papers (2021-03-04T15:34:43Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames.
We show that our approach significantly improves accuracy, scalability, and robustness against noise.
arXiv Detail & Related papers (2020-06-15T09:15:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.