Concept-Driven Deep Learning for Enhanced Protein-Specific Molecular Generation
- URL: http://arxiv.org/abs/2503.08160v1
- Date: Tue, 11 Mar 2025 08:21:57 GMT
- Title: Concept-Driven Deep Learning for Enhanced Protein-Specific Molecular Generation
- Authors: Taojie Kuang, Qianli Ma, Athanasios V. Vasilakos, Yu Wang, Qiang, Cheng, Zhixiang Ren,
- Abstract summary: We propose a novel fragment-based molecular generation framework tailored for specific proteins.<n>Our approach significantly improves synthetic feasibility and binding affinity, with a 4% increase in drug-likeness and a 6% improvement in synthetic feasibility.
- Score: 28.09898110053281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, deep learning techniques have made significant strides in molecular generation for specific targets, driving advancements in drug discovery. However, existing molecular generation methods present significant limitations: those operating at the atomic level often lack synthetic feasibility, drug-likeness, and interpretability, while fragment-based approaches frequently overlook comprehensive factors that influence protein-molecule interactions. To address these challenges, we propose a novel fragment-based molecular generation framework tailored for specific proteins. Our method begins by constructing a protein subpocket and molecular arm concept-based neural network, which systematically integrates interaction force information and geometric complementarity to sample molecular arms for specific protein subpockets. Subsequently, we introduce a diffusion model to generate molecular backbones that connect these arms, ensuring structural integrity and chemical diversity. Our approach significantly improves synthetic feasibility and binding affinity, with a 4% increase in drug-likeness and a 6% improvement in synthetic feasibility. Furthermore, by integrating explicit interaction data through a concept-based model, our framework enhances interpretability, offering valuable insights into the molecular design process.
Related papers
- A Generalist Cross-Domain Molecular Learning Framework for Structure-Based Drug Discovery [32.573496601865465]
Structure-based drug discovery (SBDD) is a systematic scientific process that develops new drugs by leveraging the detailed physical structure of the target protein.<n>Recent advancements in pre-trained models for biomolecules have demonstrated remarkable success across various biochemical applications.
arXiv Detail & Related papers (2025-03-06T12:04:56Z) - Molecule Generation for Target Protein Binding with Hierarchical Consistency Diffusion Model [17.885767456439215]
Atom-Motif Consistency Diffusion Model (AMDiff) is a hierarchical diffusion architecture that integrates both atom- and motif-level views of molecules.<n>Compared to existing approaches, AMDiff exhibits superior validity and novelty in generating molecules tailored to fit various protein pockets.
arXiv Detail & Related papers (2025-03-02T17:54:30Z) - Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
We propose a paradigm shift by encoding molecular graphs into Heterogeneous Molecular Graph Learning (KCHML)<n>KCHML conceptualizes molecules through three distinct graph views-molecular, elemental, and pharmacological-enhanced by heterogeneous molecular graphs and a dual message-passing mechanism.<n>This design offers a comprehensive representation for property prediction, as well as for downstream tasks such as drug-drug interaction (DDI) prediction.
arXiv Detail & Related papers (2025-02-17T11:53:58Z) - UniIF: Unified Molecule Inverse Folding [67.60267592514381]
We propose a unified model UniIF for inverse folding of all molecules.
Our proposed method surpasses state-of-the-art methods on all tasks.
arXiv Detail & Related papers (2024-05-29T10:26:16Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
We propose a diffusion-based fragment-wise autoregressive generation model for structure-based drug design (SBDD)
We design a novel molecule assembly strategy named conformal motif that preserves the conformation of local structures of molecules first.
We then encode the interaction of the protein-ligand complex with an SE(3)-equivariant convolutional network and generate molecules motif-by-motif with diffusion modeling.
arXiv Detail & Related papers (2024-04-02T14:44:02Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph-Based Deep Learning [40.83037811977803]
Dynaformer is a graph-based deep learning model developed to predict protein-ligand binding affinities.
It exhibits state-of-the-art scoring and ranking power on the CASF-2016 benchmark dataset.
In a virtual screening on heat shock protein 90 (HSP90), 20 candidates are identified and their binding affinities are experimentally validated.
arXiv Detail & Related papers (2022-08-19T14:55:12Z) - Widely Used and Fast De Novo Drug Design by a Protein Sequence-Based
Reinforcement Learning Model [4.815696666006742]
Structure-based de novo method can overcome the data scarcity of active by incorporating drug-target interaction into deep generative architectures.
Here, we demonstrate a widely used and fast protein sequence-based reinforcement learning model for drug discovery.
As a proof of concept, the RL model was utilized to design molecules for four targets.
arXiv Detail & Related papers (2022-08-14T10:41:52Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - The Synthesizability of Molecules Proposed by Generative Models [3.032184156362992]
Discovery of functional molecules is an expensive and time-consuming process.
One class of techniques of growing interest for early-stage drug discovery is de novo molecular generation and optimization.
These techniques can suggest novel molecular structures intended to maximize a multi-objective function.
However, the utility of these approaches is stymied by ignorance of synthesizability.
arXiv Detail & Related papers (2020-02-17T15:41:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.