MT-NAM: An Efficient and Adaptive Model for Epileptic Seizure Detection
- URL: http://arxiv.org/abs/2503.08251v1
- Date: Tue, 11 Mar 2025 10:14:53 GMT
- Title: MT-NAM: An Efficient and Adaptive Model for Epileptic Seizure Detection
- Authors: Arshia Afzal, Volkan Cevher, Mahsa Shoaran,
- Abstract summary: Micro Tree-based NAM (MT-NAM) is a distilled model based on the recently proposed Neural Additive Models (NAM)<n>MT-NAM achieves a remarkable 100$times$ improvement in inference speed compared to standard NAM, without compromising accuracy.<n>We evaluate our approach on the CHB-MIT scalp EEG dataset, which includes recordings from 24 patients with varying numbers of sessions and seizures.
- Score: 51.87482627771981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enhancing the accuracy and efficiency of machine learning algorithms employed in neural interface systems is crucial for advancing next-generation intelligent therapeutic devices. However, current systems often utilize basic machine learning models that do not fully exploit the natural structure of brain signals. Additionally, existing learning models used for neural signal processing often demonstrate low speed and efficiency during inference. To address these challenges, this study introduces Micro Tree-based NAM (MT-NAM), a distilled model based on the recently proposed Neural Additive Models (NAM). The MT-NAM achieves a remarkable 100$\times$ improvement in inference speed compared to standard NAM, without compromising accuracy. We evaluate our approach on the CHB-MIT scalp EEG dataset, which includes recordings from 24 patients with varying numbers of sessions and seizures. NAM achieves an 85.3\% window-based sensitivity and 95\% specificity. Interestingly, our proposed MT-NAM shows only a 2\% reduction in sensitivity compared to the original NAM. To regain this sensitivity, we utilize a test-time template adjuster (T3A) as an update mechanism, enabling our model to achieve higher sensitivity during test time by accommodating transient shifts in neural signals. With this online update approach, MT-NAM achieves the same sensitivity as the standard NAM while achieving approximately 50$\times$ acceleration in inference speed.
Related papers
- Deep Learning for Human Locomotion Analysis in Lower-Limb Exoskeletons: A Comparative Study [1.3569491184708433]
This paper presents an experimental comparison between eight deep neural network backbones to predict high-level locomotion parameters.
The LSTM achieved high terrain classification accuracy (0.94 +- 0.04) and precise ramp slope (1.95 +- 0.58deg) and the CNN-LSTM a stair height (15.65 +- 7.40 mm)
The system operates with 2 ms inference time, supporting real-time applications.
arXiv Detail & Related papers (2025-03-21T07:12:44Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - High-speed Low-consumption sEMG-based Transient-state micro-Gesture
Recognition [6.649481653007372]
The accuracy of the proposed SNN is 83.85% and 93.52% on the two datasets respectively.
The methods can be used for precise, high-speed, and low-power micro-gesture recognition tasks.
arXiv Detail & Related papers (2024-03-04T08:59:12Z) - Addressing the speed-accuracy simulation trade-off for adaptive spiking
neurons [0.0]
We present an algorithmically reinterpreted the adaptive integrate-and-fire (ALIF) model.
We obtain over a $50times$ training speedup using small DTs on synthetic benchmarks.
We also showcase how our model makes it possible to quickly and accurately fit real electrophysiological recordings of cortical neurons.
arXiv Detail & Related papers (2023-11-19T18:21:45Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Low Power Neuromorphic EMG Gesture Classification [3.8761525368152725]
Spiking Neural Networks (SNNs) are promising for low-power, real-time EMG gesture recognition.
We present low-power, high accuracy demonstration of EMG-signal based gesture recognition using neuromorphic Recurrent Spiking Neural Networks (RSNN)
Our network achieves state-of-the-art accuracy classification (90%) while using 53% than best reported art on Roshambo EMG dataset.
arXiv Detail & Related papers (2022-06-04T22:09:34Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Time-Frequency Localization Using Deep Convolutional Maxout Neural
Network in Persian Speech Recognition [0.0]
Time-frequency flexibility in some mammals' auditory neurons system improves recognition performance.
This paper proposes a CNN-based structure for time-frequency localization of audio signal information in the ASR acoustic model.
The average recognition score of TFCMNN models is about 1.6% higher than the average of conventional models.
arXiv Detail & Related papers (2021-08-09T05:46:58Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - A 28-nm Convolutional Neuromorphic Processor Enabling Online Learning
with Spike-Based Retinas [1.4425878137951236]
We propose SPOON, a 28-nm event-driven CNN (eCNN) for adaptive edge computing and vision applications.
It embeds online learning with only 16.8-% power and 11.8-% area overheads with the biologically-plausible direct random target projection (DRTP) algorithm.
With an energy per classification of 313nJ at 0.6V and a 0.32-mm$2$ area for accuracies of 95.3% (on-chip training) and 97.5% (off-chip training) on MNIST, we demonstrate that SPOON reaches the efficiency of conventional machine learning accelerators.
arXiv Detail & Related papers (2020-05-13T13:47:44Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
Deep neural networks (DNNs) are powerful black-box predictors that have achieved impressive performance on a wide variety of tasks.
We propose Neural Additive Models (NAMs) which combine some of the expressivity of DNNs with the inherent intelligibility of generalized additive models.
NAMs learn a linear combination of neural networks that each attend to a single input feature.
arXiv Detail & Related papers (2020-04-29T01:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.