論文の概要: Mind the Memory Gap: Unveiling GPU Bottlenecks in Large-Batch LLM Inference
- arxiv url: http://arxiv.org/abs/2503.08311v1
- Date: Tue, 11 Mar 2025 11:21:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 19:17:16.665965
- Title: Mind the Memory Gap: Unveiling GPU Bottlenecks in Large-Batch LLM Inference
- Title(参考訳): メモリギャップを念頭に - 大規模LLM推論におけるGPUブートネックの展開
- Authors: Pol G. Recasens, Ferran Agullo, Yue Zhu, Chen Wang, Eun Kyung Lee, Olivier Tardieu, Jordi Torres, Josep Ll. Berral,
- Abstract要約: 大規模言語モデルは様々なタスクに広く採用されているが、その自己回帰生成の性質は推論時に非効率な資源利用につながることが多い。
本稿では,DRAM帯域幅飽和が主なボトルネックとなっているため,大容量の推論がメモリバウンドのままであることを示す。
- 参考スコア(独自算出の注目度): 4.497936996651617
- License:
- Abstract: Large language models have been widely adopted across different tasks, but their auto-regressive generation nature often leads to inefficient resource utilization during inference. While batching is commonly used to increase throughput, performance gains plateau beyond a certain batch size, especially with smaller models, a phenomenon that existing literature typically explains as a shift to the compute-bound regime. In this paper, through an in-depth GPU-level analysis, we reveal that large-batch inference remains memory-bound, with most GPU compute capabilities underutilized due to DRAM bandwidth saturation as the primary bottleneck. To address this, we propose a Batching Configuration Advisor (BCA) that optimizes memory allocation, reducing GPU memory requirements with minimal impact on throughput. The freed memory and underutilized GPU compute capabilities can then be leveraged by concurrent workloads. Specifically, we use model replication to improve serving throughput and GPU utilization. Our findings challenge conventional assumptions about LLM inference, offering new insights and practical strategies for improving resource utilization, particularly for smaller language models.
- Abstract(参考訳): 大規模言語モデルは様々なタスクに広く採用されているが、その自己回帰生成の性質は推論時に非効率な資源利用につながることが多い。
バッチ処理はスループットを向上させるために一般的に使用されるが、パフォーマンスは特定のバッチサイズ、特により小さなモデルよりも高くなっており、既存の文献では計算バウンド方式への移行として一般的に説明されている現象である。
本稿では,DRAM帯域幅飽和が主なボトルネックとなっているため,大容量の推論がメモリバウンドのままであることを示す。
これを解決するために,メモリ割り当てを最適化し,スループットへの影響を最小限に抑えてGPUメモリ要求を低減したバッチ構成アドバイザ(BCA)を提案する。
解放されたメモリと未使用のGPU計算能力は、並列ワークロードによって活用できる。
具体的には、モデルのレプリケーションを使用して、サービススループットとGPU利用を改善します。
本研究は, LLM推論に関する従来の仮定に挑戦し, 資源利用を改善するための新たな洞察と実践的戦略, 特により小さな言語モデルについて考察した。
関連論文リスト
- HeadInfer: Memory-Efficient LLM Inference by Head-wise Offloading [79.38548165722229]
HEADINFERはKVキャッシュをCPURAMにオフロードするが、GPU上のトランスフォーマー層のKVキャッシュを完全に保存する必要はない。
HEADINFERはメモリフットプリントを大幅に削減し,計算効率を向上することを示した。
論文 参考訳(メタデータ) (2025-02-18T06:26:05Z) - Cost-Efficient Continual Learning with Sufficient Exemplar Memory [55.77835198580209]
連続学習(CL)研究は通常、非常に制約のあるメモリ資源を前提としている。
本研究では,メモリが豊富である新しい環境におけるCLについて検討する。
提案手法は,計算コストを既存手法の4/3に削減しつつ,最先端の性能を実現する。
論文 参考訳(メタデータ) (2025-02-11T05:40:52Z) - Memory-Efficient Training for Deep Speaker Embedding Learning in Speaker Verification [50.596077598766975]
資源制約のあるシナリオにおける深層話者埋め込み学習のためのメモリ効率のトレーニング戦略について検討する。
アクティベーションのために、中間アクティベーションを格納する必要がない2種類の可逆ニューラルネットワークを設計する。
状態に対して、元の32ビット浮動小数点値を動的ツリーベースの8ビットデータ型に置き換える動的量子化手法を導入する。
論文 参考訳(メタデータ) (2024-12-02T06:57:46Z) - MoE-Lightning: High-Throughput MoE Inference on Memory-constrained GPUs [55.95879347182669]
MoEアーキテクチャは、推論コストの比例的な増加なしにモデルキャパシティを向上できることで有名である。
MoE-LightningはCPU-GPU-I/OパイプラインスケジュールであるCGOPipeを導入し、ページ重み付けにより高いリソース利用を実現する。
MoE-Lightningは、単一のT4 GPU(16GB)上でMixtral 8x7Bの最先端オフロード可能なLLM推論システムよりも最大10.3倍高いスループットを実現することができる
論文 参考訳(メタデータ) (2024-11-18T01:06:12Z) - Deep Optimizer States: Towards Scalable Training of Transformer Models Using Interleaved Offloading [2.8231000588510757]
トランスフォーマーと大規模言語モデル(LLM)は、すべてのドメインで急速に採用されている。
変圧器の訓練は非常に高価で、しばしば記憶壁にぶつかる」
本稿では,LLMをCPUまたはGPU上で更新フェーズをスケジュールしたサブグループに分割する手法を提案する。
論文 参考訳(メタデータ) (2024-10-26T00:43:59Z) - MEFT: Memory-Efficient Fine-Tuning through Sparse Adapter [40.616849959987555]
本稿では,大規模言語モデル (LLM) を大容量かつメモリ効率のよいアダプタで微調整する機構を提案する。
これは、LLMのFeed-Forward Networks(FFN)における固有のアクティベーション間隔を活用することで実現される。
我々は、不必要なCPU計算を緩和し、GPUとCPU間の通信量を削減するために、Mixture of Experts(MoE)のようなアーキテクチャを採用している。
論文 参考訳(メタデータ) (2024-06-07T14:49:22Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - LLMem: Estimating GPU Memory Usage for Fine-Tuning Pre-Trained LLMs [4.536118764799076]
ハードウェアに制限がある微調整済みの大規模言語モデルでは、GPUメモリの制約が問題となっている。
LLMemは、分散微調整法を適用する際のGPUメモリ消費を推定するソリューションである。
LLMemは1つのGPU上でのピークGPUメモリ使用量を正確に推定し、エラー率は最大1.6%であることを示す。
論文 参考訳(メタデータ) (2024-04-16T22:11:35Z) - JORA: JAX Tensor-Parallel LoRA Library for Retrieval Augmented Fine-Tuning [16.86356520836045]
本稿では,Llama-2モデルのPEFT互換微調整のための新しいフレームワークについて紹介する。
我々のフレームワークは、JAXのジャスト・イン・タイム(JIT)コンパイルと、効率的なリソース管理のためにテンソルシャーディングを独自に利用しています。
実験では,Hugging Face/DeepSpeed実装を4GPUで実装するのに対して,GPUあたりのVRAMは半分以下であるのに対して,ランタイムでは12倍以上の改善が見られた。
論文 参考訳(メタデータ) (2024-03-17T23:02:04Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
ヘテロジニアスCPU+GPUアーキテクチャの深層学習のためのトレーニングアルゴリズムについて検討する。
私たちの2倍の目標 -- 収束率と資源利用を同時に最大化する -- は、この問題を難しくします。
これらのアルゴリズムの実装は,複数の実データセットよりも高速な収束と資源利用の両立を実現していることを示す。
論文 参考訳(メタデータ) (2020-04-19T05:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。