InfluenceNet: AI Models for Banzhaf and Shapley Value Prediction
- URL: http://arxiv.org/abs/2503.08381v1
- Date: Tue, 11 Mar 2025 12:40:42 GMT
- Title: InfluenceNet: AI Models for Banzhaf and Shapley Value Prediction
- Authors: Benjamin Kempinski, Tal Kachman,
- Abstract summary: We introduce a novel Neural Networks-based approach that efficiently estimates power indices for voting games.<n>This method not only addresses existing computational bottlenecks, but also enables rapid analysis of large coalitions.
- Score: 2.07180164747172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Power indices are essential in assessing the contribution and influence of individual agents in multi-agent systems, providing crucial insights into collaborative dynamics and decision-making processes. While invaluable, traditional computational methods for exact or estimated power indices values require significant time and computational constraints, especially for large $(n\ge10)$ coalitions. These constraints have historically limited researchers' ability to analyse complex multi-agent interactions comprehensively. To address this limitation, we introduce a novel Neural Networks-based approach that efficiently estimates power indices for voting games, demonstrating comparable and often superiour performance to existing tools in terms of both speed and accuracy. This method not only addresses existing computational bottlenecks, but also enables rapid analysis of large coalitions, opening new avenues for multi-agent system research by overcoming previous computational limitations and providing researchers with a more accessible, scalable analytical tool.This increased efficiency will allow for the analysis of more complex and realistic multi-agent scenarios.
Related papers
- Optimization and Learning in Open Multi-Agent Systems [1.0249620437941]
This article introduces a novel distributed algorithm to address a broad class of problems in "open networks"<n>The proposed algorithm is used to solve dynamic consensus or tracking problems on different metrics of interest.
arXiv Detail & Related papers (2025-01-28T10:40:09Z) - Distributed Cooperative AI for Large-Scale Eigenvalue Computations Using Neural Networks [0.0]
This paper presents a novel method for eigenvalue computation using a distributed cooperative neural network framework.
Our algorithm enables multiple autonomous agents to collaboratively estimate the smallest eigenvalue of large matrices.
arXiv Detail & Related papers (2024-09-10T09:26:55Z) - Scaling Large-Language-Model-based Multi-Agent Collaboration [72.8998796426346]
Recent breakthroughs in large language model-driven autonomous agents have revealed that multi-agent collaboration often surpasses each individual through collective reasoning.<n>This study explores whether the continuous addition of collaborative agents can yield similar benefits.
arXiv Detail & Related papers (2024-06-11T11:02:04Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
Attack Graph (AG) represents the best-suited solution to support cyber risk assessment for multi-step attacks on computer networks.
Current solutions propose to address the generation problem from the algorithmic perspective and postulate the analysis only after the generation is complete.
This paper rethinks the classic AG analysis through a novel workflow in which the analyst can query the system anytime.
arXiv Detail & Related papers (2023-12-27T10:44:58Z) - Partially Observable Multi-Agent Reinforcement Learning with Information Sharing [33.145861021414184]
We study provable multi-agent reinforcement learning (RL) in the general framework of partially observable games (POSGs)
We advocate leveraging the potential emph information-sharing among agents, a common practice in empirical multi-agent RL, and a standard model for multi-agent control systems with communications.
arXiv Detail & Related papers (2023-08-16T23:42:03Z) - Data-Scarce Identification of Game Dynamics via Sum-of-Squares Optimization [29.568222003322344]
We introduce the Side-Information Assisted Regression (SIAR) framework, designed to identify game dynamics in multiplayer normal-form games.
SIAR is solved using sum-of-squares (SOS) optimization, resulting in a hierarchy of approximations that provably converge to the true dynamics of the system.
We showcase that the SIAR framework accurately predicts player behavior across a spectrum of normal-form games, widely-known families of game dynamics, and strong benchmarks, even if the unknown system is chaotic.
arXiv Detail & Related papers (2023-07-13T09:14:48Z) - Factorization of Multi-Agent Sampling-Based Motion Planning [72.42734061131569]
Modern robotics often involves multiple embodied agents operating within a shared environment.
Standard sampling-based algorithms can be used to search for solutions in the robots' joint space.
We integrate the concept of factorization into sampling-based algorithms, which requires only minimal modifications to existing methods.
We present a general implementation of a factorized SBA, derive an analytical gain in terms of sample complexity for PRM*, and showcase empirical results for RRG.
arXiv Detail & Related papers (2023-04-01T15:50:18Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
We propose the attention-inspired numerical solver (AttNS) to solve differential equations due to limited data.<n>AttNS is inspired by the effectiveness of attention modules in Residual Neural Networks (ResNet) in enhancing model generalization and robustness.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - A Survey of Quantization Methods for Efficient Neural Network Inference [75.55159744950859]
quantization is the problem of distributing continuous real-valued numbers over a fixed discrete set of numbers to minimize the number of bits required.
It has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas.
Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x.
arXiv Detail & Related papers (2021-03-25T06:57:11Z) - Comparative Analysis of Polynomial and Rational Approximations of
Hyperbolic Tangent Function for VLSI Implementation [5.429955391775968]
Deep neural networks yield the state-of-the-art results in many computer vision and human machine interface applications such as object detection, speech recognition etc.
Since, these networks are computationally expensive, customized accelerators are designed for achieving the required performance at lower cost and power.
arXiv Detail & Related papers (2020-07-13T07:31:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.