論文の概要: OpenRAG: Optimizing RAG End-to-End via In-Context Retrieval Learning
- arxiv url: http://arxiv.org/abs/2503.08398v1
- Date: Tue, 11 Mar 2025 13:04:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 22:35:51.774718
- Title: OpenRAG: Optimizing RAG End-to-End via In-Context Retrieval Learning
- Title(参考訳): OpenRAG: In-Context Retrieval Learning による RAG End-to-End の最適化
- Authors: Jiawei Zhou, Lei Chen,
- Abstract要約: 本稿では,レトリバーを調整してコンテキスト内の関連性を捉えることで,エンドツーエンドに最適化されたRAGフレームワークであるOpenRAGを紹介する。
幅広いタスクにわたる実験により、OpenRAGは、レトリバーをエンドツーエンドにチューニングすることで、元のレトリバーよりも4.0%の一貫した改善をもたらすことを示した。
- 参考スコア(独自算出の注目度): 13.181087031343619
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we analyze and empirically show that the learned relevance for conventional information retrieval (IR) scenarios may be inconsistent in retrieval-augmented generation (RAG) scenarios. To bridge this gap, we introduce OpenRAG, a RAG framework that is optimized end-to-end by tuning the retriever to capture in-context relevance, enabling adaptation to the diverse and evolving needs. Extensive experiments across a wide range of tasks demonstrate that OpenRAG, by tuning a retriever end-to-end, leads to a consistent improvement of 4.0% over the original retriever, consistently outperforming existing state-of-the-art retrievers by 2.1%. Additionally, our results indicate that for some tasks, an end-to-end tuned 0.2B retriever can achieve improvements that surpass those of RAG-oriented or instruction-tuned 8B large language models (LLMs), highlighting the cost-effectiveness of our approach in enhancing RAG systems.
- Abstract(参考訳): 本稿では、従来の情報検索(IR)シナリオの学習関連性は、検索強化生成(RAG)シナリオでは矛盾する可能性があることを示す。
このギャップを埋めるために、我々はOpenRAGを紹介します。これは、レトリバーを調整してコンテクスト内の関連性を把握し、多様で進化するニーズへの適応を可能にすることで、エンドツーエンドに最適化されたRAGフレームワークです。
幅広いタスクにわたる大規模な実験により、OpenRAGは、レトリバーをエンドツーエンドにチューニングすることで、元のレトリバーよりも4.0%改善し、既存の最先端レトリバーを2.1%上回る結果となった。
さらに,あるタスクに対して,RTG指向あるいは命令調整型8B大言語モデル(LLM)を超越した改善を実現し,RAGシステムの強化におけるアプローチの費用対効果を強調した。
関連論文リスト
- Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval [49.669503570350166]
生成情報検索(GenIR)は、文書識別子(ドシデント)生成タスクとして文書検索を定式化する有望なニューラル検索パラダイムである。
既存のGenIRモデルはトークンレベルのミスアライメントに悩まされており、次のトークンを予測するためにトレーニングされたモデルは、ドキュメントレベルの関連性を効果的にキャプチャできないことが多い。
本稿では,トークンレベルのドシデント生成と文書レベルのドシデンス推定をペアのランク付けによる直接最適化により整合するダイレクトドキュメントレバレンス最適化(DDRO)を提案する。
論文 参考訳(メタデータ) (2025-04-07T15:27:37Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
本稿では,選択的検索と知識の言語化を結合する新しいフレームワークであるSelf-Routing RAG(SR-RAG)を提案する。
SR-RAGは、LLMが外部検索と独自のパラメトリック知識の言語化を動的に決定できるようにする。
近接探索による動的知識源推定を導入し,知識源決定の精度を向上させる。
論文 参考訳(メタデータ) (2025-04-01T17:59:30Z) - RAGO: Systematic Performance Optimization for Retrieval-Augmented Generation Serving [9.962031642362813]
Retrieval-augmented Generation (RAG) は、信頼性LLMサービスに対する一般的なアプローチとして現れつつある。
RAGは、幅広いRAGアルゴリズムをキャプチャする構造化された抽象化である。
RAGOは、効率的なRAGサービスのためのシステム最適化フレームワークである。
論文 参考訳(メタデータ) (2025-03-18T18:58:13Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - Towards Optimizing a Retrieval Augmented Generation using Large Language Model on Academic Data [4.322454918650575]
本研究では,大規模技術大学における各種研究プログラムを対象としたデータ検索に焦点を当てた。
オープンソース(Llama2、Mistralなど)とクローズドソース(GPT-3.5、GPT-4など)の統合を探ることで、ドメイン固有のコンテキストにおけるRAGフレームワークの適用と最適化に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-11-13T08:43:37Z) - Revisiting BPR: A Replicability Study of a Common Recommender System Baseline [78.00363373925758]
我々は,BPRモデルの特徴を考察し,その性能への影響を示し,オープンソースのBPR実装について検討する。
分析の結果,これらの実装とオリジナルのBPR論文の矛盾が明らかとなり,特定の実装に対して最大50%の性能低下がみられた。
BPRモデルは、トップnのレコメンデーションタスクにおける最先端メソッドに近いパフォーマンスレベルを達成でき、特定のデータセット上でもパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2024-09-21T18:39:53Z) - Stochastic RAG: End-to-End Retrieval-Augmented Generation through Expected Utility Maximization [35.74911182120259]
RAGは、検索拡張生成(RAG)モデルのエンドツーエンド最適化のための新しいアプローチである。
我々はGumbel-top-k をストレートスルーで使い、置換せずにサンプリングに微分可能な近似を提供する。
論文 参考訳(メタデータ) (2024-05-05T05:42:33Z) - Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル (LLM) で文書のプライベートな知識基盤を注入し、生成的Q&A (Question-Answering) システムを構築するための一般的なアプローチである。
本稿では,Vector インデックスや Sparse インデックスなどのセマンティック検索手法をハイブリッドクエリ手法と組み合わせた 'Blended RAG' 手法を提案する。
本研究は,NQ や TREC-COVID などの IR (Information Retrieval) データセットの検索結果の改善と,新たなベンチマーク設定を行う。
論文 参考訳(メタデータ) (2024-03-22T17:13:46Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - RA-DIT: Retrieval-Augmented Dual Instruction Tuning [90.98423540361946]
Retrieval-augmented Language Model (RALMs) は、外部データストアからロングテールおよび最新の知識にアクセスすることで、パフォーマンスを向上させる。
既存のアプローチでは、LM事前トレーニングに高価な検索固有の修正が必要になるか、あるいは、最適以下のパフォーマンスをもたらすデータストアのポストホック統合を使用する必要がある。
本稿では,第3の選択肢を提供する軽量な微調整手法であるRetrieval-Augmented Dual Instruction Tuning (RA-DIT)を紹介する。
論文 参考訳(メタデータ) (2023-10-02T17:16:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。