論文の概要: Stochastic RAG: End-to-End Retrieval-Augmented Generation through Expected Utility Maximization
- arxiv url: http://arxiv.org/abs/2405.02816v1
- Date: Sun, 5 May 2024 05:42:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 18:10:30.094618
- Title: Stochastic RAG: End-to-End Retrieval-Augmented Generation through Expected Utility Maximization
- Title(参考訳): Stochastic RAG: 実用性最大化によるエンドツーエンド検索生成
- Authors: Hamed Zamani, Michael Bendersky,
- Abstract要約: RAGは、検索拡張生成(RAG)モデルのエンドツーエンド最適化のための新しいアプローチである。
我々はGumbel-top-k をストレートスルーで使い、置換せずにサンプリングに微分可能な近似を提供する。
- 参考スコア(独自算出の注目度): 35.74911182120259
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces Stochastic RAG--a novel approach for end-to-end optimization of retrieval-augmented generation (RAG) models that relaxes the simplifying assumptions of marginalization and document independence, made in most prior work. Stochastic RAG casts the retrieval process in RAG as a stochastic sampling without replacement process. Through this formulation, we employ straight-through Gumbel-top-k that provides a differentiable approximation for sampling without replacement and enables effective end-to-end optimization for RAG. We conduct extensive experiments on seven diverse datasets on a wide range of tasks, from open-domain question answering to fact verification to slot-filling for relation extraction and to dialogue systems. By applying this optimization method to a recent and effective RAG model, we advance state-of-the-art results on six out of seven datasets.
- Abstract(参考訳): 本稿では,検索拡張生成モデル(RAG)のエンドツーエンド最適化のための新しいアプローチであるStochastic RAGを紹介する。
確率RAGは、RAGの検索プロセスを置換プロセスなしで確率的なサンプリングとしてキャストする。
この定式化により、Gumbel-top-k をストレートスルーで使用し、置換せずにサンプリングに微分可能な近似を提供し、RAG の効率的なエンドツーエンド最適化を可能にする。
オープンドメイン質問応答から事実検証,関係抽出のためのスロットフィリング,対話システムなど,幅広いタスクに関する7つの多様なデータセットについて広範な実験を行った。
この最適化手法を最近のRAGモデルに適用することにより、7つのデータセットのうち6つについて最先端の結果を前進させる。
関連論文リスト
- Gumbel Reranking: Differentiable End-to-End Reranker Optimization [61.16471123356738]
RAGシステムは関連する文書を識別するためにリランカーに依存している。
注釈付きクエリ-ドキュメントペアが不足しているため、これらのモデルの微調整は依然として難しい。
我々は,トレーニングと推論のギャップを最小限に抑えることを目的とした,リランカーのためのエンドツーエンドのトレーニングフレームワークであるGumbel Re rankを提案する。
論文 参考訳(メタデータ) (2025-02-16T13:23:39Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - MAIN-RAG: Multi-Agent Filtering Retrieval-Augmented Generation [34.66546005629471]
大規模言語モデル(LLM)は、様々な自然言語処理タスクに不可欠なツールであるが、時代遅れや誤った情報の生成に悩まされることが多い。
Retrieval-Augmented Generation (RAG)は、外部のリアルタイム情報検索をLLM応答に組み込むことでこの問題に対処する。
この問題に対処するため,マルチエージェントフィルタ検索検索生成(MAIN-RAG)を提案する。
MAIN-RAGはトレーニング不要なRAGフレームワークで、複数のLCMエージェントを利用して検索した文書のフィルタリングとスコア付けを行う。
論文 参考訳(メタデータ) (2024-12-31T08:07:26Z) - Evolutionary Pre-Prompt Optimization for Mathematical Reasoning [45.461506988071534]
本稿では,実効的なチェーン・オブ・フォー・プレプロンプトの設計におけるサンプル選択の最適化について検討する。
アルゴリズムの選択は、通常、進化的計算のような比較に基づく手法に有利であり、有効性と実現可能性を大幅に向上させることを示している。
論文 参考訳(メタデータ) (2024-12-05T16:12:06Z) - Learning to Rank for Multiple Retrieval-Augmented Models through Iterative Utility Maximization [21.115495457454365]
本稿では,複数検索拡張世代(RAG)エージェントを対象とした統合検索エンジンの設計について検討する。
本稿では,これらのRAGエージェントの検索結果を検索エンジンが生成し,オフラインで検索した文書の品質に関するフィードバックを収集する反復的手法を提案する。
我々は、このアプローチをオンライン環境に適応させ、リアルタイムな個別エージェントのフィードバックに基づいて、検索エンジンがその振る舞いを洗練できるようにする。
論文 参考訳(メタデータ) (2024-10-13T17:53:50Z) - Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
本研究では,これらの問題に対処するために,Annealed Importance Smpling (AIS)アプローチを提案する。
シークエンシャルモンテカルロサンプリング器とVIの強度を組み合わせることで、より広い範囲の後方分布を探索し、徐々にターゲット分布に接近する。
実験結果から,本手法はより厳密な変動境界,高い対数類似度,より堅牢な収束率で最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-08-13T08:09:05Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - Regression with Label Differential Privacy [64.21020761920322]
与えられた回帰損失関数の下で最適なラベルDPランダム化機構を導出する。
我々は、最適メカニズムが「ビンのランダム化応答」の形をとることを証明した。
論文 参考訳(メタデータ) (2022-12-12T17:41:32Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。