論文の概要: JiSAM: Alleviate Labeling Burden and Corner Case Problems in Autonomous Driving via Minimal Real-World Data
- arxiv url: http://arxiv.org/abs/2503.08422v2
- Date: Thu, 13 Mar 2025 06:54:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 12:09:16.191846
- Title: JiSAM: Alleviate Labeling Burden and Corner Case Problems in Autonomous Driving via Minimal Real-World Data
- Title(参考訳): JiSAM: 最小の実世界データによる自動運転におけるラベル付けバーデンとコーナーケースの問題を軽減する
- Authors: Runjian Chen, Wenqi Shao, Bo Zhang, Shaoshuai Shi, Li Jiang, Ping Luo,
- Abstract要約: 本稿では,ジッタリング強化,ドメイン認識バックボーン,メモリに基づくセクタライズAlignMentのためのJiSAMというプラグイン・アンド・プレイ手法を提案する。
有名なADデータセットであるNuScenesで実施された広範な実験において、SOTA 3Dオブジェクト検出器を用いて、JiSAMはシミュレーションデータと2.5%の実データにラベルを付けるだけで、実データで訓練されたモデルに匹敵する性能が得られることを示した。
- 参考スコア(独自算出の注目度): 49.2298619289506
- License:
- Abstract: Deep-learning-based autonomous driving (AD) perception introduces a promising picture for safe and environment-friendly transportation. However, the over-reliance on real labeled data in LiDAR perception limits the scale of on-road attempts. 3D real world data is notoriously time-and-energy-consuming to annotate and lacks corner cases like rare traffic participants. On the contrary, in simulators like CARLA, generating labeled LiDAR point clouds with corner cases is a piece of cake. However, introducing synthetic point clouds to improve real perception is non-trivial. This stems from two challenges: 1) sample efficiency of simulation datasets 2) simulation-to-real gaps. To overcome both challenges, we propose a plug-and-play method called JiSAM , shorthand for Jittering augmentation, domain-aware backbone and memory-based Sectorized AlignMent. In extensive experiments conducted on the famous AD dataset NuScenes, we demonstrate that, with SOTA 3D object detector, JiSAM is able to utilize the simulation data and only labels on 2.5% available real data to achieve comparable performance to models trained on all real data. Additionally, JiSAM achieves more than 15 mAPs on the objects not labeled in the real training set. We will release models and codes.
- Abstract(参考訳): ディープラーニングに基づく自律運転(AD)の認識は、安全で環境に優しい交通機関にとって有望なイメージをもたらす。
しかし、LiDARの認識における実際のラベル付きデータへの過度な信頼は、オンロードの試みの規模を制限する。
3Dの現実世界のデータは、アノテートするのに時間とエネルギーがかかり、稀な交通参加者のようなコーナーケースが欠けていることで知られている。
それとは逆に、CARLAのようなシミュレータでは、コーナーケース付きのラベル付きLiDAR点雲を生成するのは、ケーキの一部です。
しかし、実際の知覚を改善するために合成点雲を導入することは簡単ではない。
これは2つの課題に端を発する。
1)シミュレーションデータセットのサンプル効率
2)シミュレーションと現実のギャップ。
両課題を克服するために,JiSAMというプラグイン・アンド・プレイ方式を提案する。
有名なADデータセットであるNuScenesで実施された広範な実験において、SOTA 3Dオブジェクト検出器を用いて、JiSAMはシミュレーションデータと2.5%の実データにラベルを付けるだけで、実データで訓練されたモデルに匹敵する性能が得られることを示した。
さらに、JiSAMは実際のトレーニングセットにラベル付けされていないオブジェクトに対して15mAP以上を達成する。
モデルとコードをリリースします。
関連論文リスト
- Transfer Learning from Simulated to Real Scenes for Monocular 3D Object Detection [9.708971995966476]
本稿では,これらの課題に対処するための2段階のトレーニング戦略を紹介する。
当社のアプローチでは,大規模合成データセットであるRoadSense3Dのモデルをトレーニングしています。
実世界のデータセットの組み合わせでモデルを微調整し、実用条件への適応性を高める。
論文 参考訳(メタデータ) (2024-08-28T08:44:58Z) - Exploring Generative AI for Sim2Real in Driving Data Synthesis [6.769182994217369]
ドライビングシミュレータは、対応するアノテーションで様々なドライビングシナリオを自動的に生成するソリューションを提供するが、シミュレーションとリアリティ(Sim2Real)ドメインギャップは依然として課題である。
本稿では,現実的なデータセット作成のためのブリッジとして,運転シミュレータからのセマンティックラベルマップを活用するために,3つの異なる生成AI手法を適用した。
実験の結果,手動のアノテートラベルが提供されると,GANベースの手法は高品質な画像を生成するには適しているが,ControlNetは,シミュレータ生成ラベルを使用すると,より少ないアーティファクトとより構造的忠実度を持つ合成データセットを生成することがわかった。
論文 参考訳(メタデータ) (2024-04-14T01:23:19Z) - Are NeRFs ready for autonomous driving? Towards closing the real-to-simulation gap [6.393953433174051]
本稿では,実際のデータギャップに対処するための新しい視点を提案する。
自律運転環境における実シミュレーションデータギャップの大規模調査を初めて実施する。
シミュレーションデータに対するモデルロバスト性は顕著に向上し,実世界の性能も向上した。
論文 参考訳(メタデータ) (2024-03-24T11:09:41Z) - An Effective Motion-Centric Paradigm for 3D Single Object Tracking in
Point Clouds [50.19288542498838]
LiDARポイントクラウド(LiDAR SOT)における3Dシングルオブジェクトトラッキングは、自動運転において重要な役割を果たす。
現在のアプローチはすべて、外観マッチングに基づくシームズパラダイムに従っている。
我々は新たな視点からLiDAR SOTを扱うための動き中心のパラダイムを導入する。
論文 参考訳(メタデータ) (2023-03-21T17:28:44Z) - Quantifying the LiDAR Sim-to-Real Domain Shift: A Detailed Investigation
Using Object Detectors and Analyzing Point Clouds at Target-Level [1.1999555634662635]
自律運転のためのニューラルネットワークに基づくLiDARオブジェクト検出アルゴリズムは、トレーニング、検証、テストのために大量のデータを必要とする。
ニューラルネットワークのトレーニングにシミュレーションデータを使用することで、シーン、シナリオ、分布の違いによるトレーニングデータとテストデータのドメインシフトが生じることを示す。
論文 参考訳(メタデータ) (2023-03-03T12:52:01Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
リアルLiDARセンサのデータ駆動シミュレーションのためのパイプラインを提案する。
本モデルでは, 透明表面上の落下点などの現実的な効果を符号化できることが示される。
我々は2つの異なるLiDARセンサのモデルを学習し、それに従ってシミュレーションされたLiDARデータを改善する。
論文 参考訳(メタデータ) (2022-09-22T13:12:54Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
合成ドメインのみにおけるラベルの使用に焦点を当てる。
提案手法では,ニューラル不変表現の学習方法と,シミュレータからデータをサンプリングする方法に関する理論的にインスピレーションを得た視点を導入する。
マルチセンサーデータを用いた鳥眼視車両分割作業におけるアプローチについて紹介する。
論文 参考訳(メタデータ) (2021-11-15T18:37:43Z) - SimAug: Learning Robust Representations from Simulation for Trajectory
Prediction [78.91518036949918]
本研究では,シミュレーション学習データの拡張により,ロバスト表現を学習する新しい手法を提案する。
我々は,SimAugが実世界の3つのベンチマークで有望な結果を得ることを示す。
論文 参考訳(メタデータ) (2020-04-04T21:22:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。