KAP: MLLM-assisted OCR Text Enhancement for Hybrid Retrieval in Chinese Non-Narrative Documents
- URL: http://arxiv.org/abs/2503.08452v3
- Date: Thu, 01 May 2025 12:51:32 GMT
- Title: KAP: MLLM-assisted OCR Text Enhancement for Hybrid Retrieval in Chinese Non-Narrative Documents
- Authors: Hsin-Ling Hsu, Ping-Sheng Lin, Jing-Di Lin, Jengnan Tzeng,
- Abstract summary: We propose Knowledge-Aware Preprocessing (KAP), a novel framework that transforms noisy OCR outputs into retrieval-optimized text.<n>KAP adopts a two-stage approach: it first extracts text using OCR, then employs Multimodal Large Language Models to refine the output.<n> Empirical results demonstrate that KAP consistently and significantly outperforms conventional preprocessing approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid Retrieval systems, combining Sparse and Dense Retrieval methods, struggle with Traditional Chinese non-narrative documents due to their complex formatting, rich vocabulary, and the insufficient understanding of Chinese synonyms by common embedding models. Previous approaches inadequately address the dual needs of these systems, focusing mainly on general text quality improvement rather than optimizing for retrieval. We propose Knowledge-Aware Preprocessing (KAP), a novel framework that transforms noisy OCR outputs into retrieval-optimized text. KAP adopts a two-stage approach: it first extracts text using OCR, then employs Multimodal Large Language Models to refine the output by integrating visual information from the original documents. This design reduces OCR noise, reconstructs structural elements, and formats the text to satisfy the distinct requirements of sparse and dense retrieval. Empirical results demonstrate that KAP consistently and significantly outperforms conventional preprocessing approaches. Our code is available at https://github.com/JustinHsu1019/KAP.
Related papers
- VISTA-OCR: Towards generative and interactive end to end OCR models [3.7548609506798494]
VISTA-OCR is a lightweight architecture that unifies text detection and recognition within a single generative model.
Built on an encoder-decoder architecture, VISTA-OCR is progressively trained, starting with the visual feature extraction phase.
To enhance the model's capabilities, we built a new dataset composed of real-world examples enriched with bounding box annotations and synthetic samples.
arXiv Detail & Related papers (2025-04-04T17:39:53Z) - Cognitive-Aligned Document Selection for Retrieval-augmented Generation [2.9060210098040855]
We propose GGatrieval to dynamically update queries and filter high-quality, reliable retrieval documents.<n>We parse the user query into its syntactic components and perform fine-grained grounded alignment with the retrieved documents.<n>Our approach introduces a novel criterion for filtering retrieved documents, closely emulating human strategies for acquiring targeted information.
arXiv Detail & Related papers (2025-02-17T13:00:15Z) - SEAL: Speech Embedding Alignment Learning for Speech Large Language Model with Retrieval-Augmented Generation [10.828717295018123]
We propose a unified embedding framework that eliminates the need for intermediate text representations.
Our model reduces pipeline latency by 50% while achieving higher retrieval accuracy compared to traditional two-stage methods.
arXiv Detail & Related papers (2025-01-26T15:04:02Z) - GeAR: Generation Augmented Retrieval [82.20696567697016]
Document retrieval techniques form the foundation for the development of large-scale information systems.<n>The prevailing methodology is to construct a bi-encoder and compute the semantic similarity.<n>We propose a new method called $textbfGe$neration that incorporates well-designed fusion and decoding modules.
arXiv Detail & Related papers (2025-01-06T05:29:00Z) - MAIN-RAG: Multi-Agent Filtering Retrieval-Augmented Generation [34.66546005629471]
Large Language Models (LLMs) are essential tools for various natural language processing tasks but often suffer from generating outdated or incorrect information.<n>Retrieval-Augmented Generation (RAG) addresses this issue by incorporating external, real-time information retrieval to ground LLM responses.<n>To tackle this problem, we propose Multi-Agent Filtering Retrieval-Augmented Generation (MAIN-RAG)<n>MAIN-RAG is a training-free RAG framework that leverages multiple LLM agents to collaboratively filter and score retrieved documents.
arXiv Detail & Related papers (2024-12-31T08:07:26Z) - Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
Machine-generated content poses challenges such as academic plagiarism and the spread of misinformation.
We introduce novel methodologies and datasets to overcome these challenges.
We propose MhBART, an encoder-decoder model designed to emulate human writing style.
We also propose DTransformer, a model that integrates discourse analysis through PDTB preprocessing to encode structural features.
arXiv Detail & Related papers (2024-12-17T08:47:41Z) - Reference-Based Post-OCR Processing with LLM for Precise Diacritic Text in Historical Document Recognition [1.6941039309214678]
We propose a method utilizing available content-focused ebooks as a reference base to correct imperfect OCR-generated text.
This technique generates high-precision pseudo-page-to-page labels for diacritic languages.
The pipeline eliminates various types of noise from aged documents and addresses issues such as missing characters, words, and disordered sequences.
arXiv Detail & Related papers (2024-10-17T08:05:02Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.<n>With a focus on factual accuracy, we propose three novel metrics: Completeness, Hallucination, and Irrelevance.<n> Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - QAEA-DR: A Unified Text Augmentation Framework for Dense Retrieval [11.62210546106209]
In dense retrieval, embedding long texts into dense vectors can result in information loss, leading to inaccurate query-text matching.<n>Recent studies mainly focus on improving the sentence embedding model or retrieval process.<n>We introduce a novel text augmentation framework for dense retrieval, which transforms raw documents into information-dense text formats.
arXiv Detail & Related papers (2024-07-29T17:39:08Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
We propose a pioneering generAtive Cross-modal rEtrieval framework (ACE) for end-to-end cross-modal retrieval.
ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval [76.50690734636477]
We propose PromptReps, which combines the advantages of both categories: no need for training and the ability to retrieve from the whole corpus.
The retrieval system harnesses both dense text embedding and sparse bag-of-words representations.
arXiv Detail & Related papers (2024-04-29T04:51:30Z) - EfficientOCR: An Extensible, Open-Source Package for Efficiently
Digitizing World Knowledge [1.8434042562191815]
EffOCR is a novel open-source optical character recognition (OCR) package.
It meets both the computational and sample efficiency requirements for liberating texts at scale.
EffOCR is cheap and sample efficient to train, as the model only needs to learn characters' visual appearance and not how they are used in sequence to form language.
arXiv Detail & Related papers (2023-10-16T04:20:16Z) - Towards Codable Watermarking for Injecting Multi-bits Information to LLMs [86.86436777626959]
Large language models (LLMs) generate texts with increasing fluency and realism.
Existing watermarking methods are encoding-inefficient and cannot flexibly meet the diverse information encoding needs.
We propose Codable Text Watermarking for LLMs (CTWL) that allows text watermarks to carry multi-bit customizable information.
arXiv Detail & Related papers (2023-07-29T14:11:15Z) - On Search Strategies for Document-Level Neural Machine Translation [51.359400776242786]
Document-level neural machine translation (NMT) models produce a more consistent output across a document.
In this work, we aim to answer the question how to best utilize a context-aware translation model in decoding.
arXiv Detail & Related papers (2023-06-08T11:30:43Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
Large-scale retrieval is to recall relevant documents from a huge collection given a query.
Recent retrieval methods based on pre-trained language models (PLM) can be coarsely categorized into either dense-vector or lexicon-based paradigms.
We propose a new learning framework, UnifieR which unifies dense-vector and lexicon-based retrieval in one model with a dual-representing capability.
arXiv Detail & Related papers (2022-05-23T11:01:59Z) - HLATR: Enhance Multi-stage Text Retrieval with Hybrid List Aware
Transformer Reranking [16.592276887533714]
Hybrid List Aware Transformer Reranking (HLATR) is a subsequent reranking module to incorporate both retrieval and reranking stage features.
HLATR is lightweight and can be easily parallelized with existing text retrieval systems.
Empirical experiments on two large-scale text retrieval datasets show that HLATR can efficiently improve the ranking performance of existing multi-stage text retrieval methods.
arXiv Detail & Related papers (2022-05-21T11:38:33Z) - Lexically Aware Semi-Supervised Learning for OCR Post-Correction [90.54336622024299]
Much of the existing linguistic data in many languages of the world is locked away in non-digitized books and documents.
Previous work has demonstrated the utility of neural post-correction methods on recognition of less-well-resourced languages.
We present a semi-supervised learning method that makes it possible to utilize raw images to improve performance.
arXiv Detail & Related papers (2021-11-04T04:39:02Z) - Retrieve Fast, Rerank Smart: Cooperative and Joint Approaches for
Improved Cross-Modal Retrieval [80.35589927511667]
Current state-of-the-art approaches to cross-modal retrieval process text and visual input jointly, relying on Transformer-based architectures with cross-attention mechanisms that attend over all words and objects in an image.
We propose a novel fine-tuning framework which turns any pretrained text-image multi-modal model into an efficient retrieval model.
Our experiments on a series of standard cross-modal retrieval benchmarks in monolingual, multilingual, and zero-shot setups, demonstrate improved accuracy and huge efficiency benefits over the state-of-the-art cross-encoders.
arXiv Detail & Related papers (2021-03-22T15:08:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.