論文の概要: Optimizing Ride-Pooling Operations with Extended Pickup and Drop-Off Flexibility
- arxiv url: http://arxiv.org/abs/2503.08472v1
- Date: Tue, 11 Mar 2025 14:17:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:41:45.842746
- Title: Optimizing Ride-Pooling Operations with Extended Pickup and Drop-Off Flexibility
- Title(参考訳): 拡張ピックアップとドロップオフフレキシビリティによるライダーポーリング動作の最適化
- Authors: Hao Jiang, Yixing Xu, Pradeep Varakantham,
- Abstract要約: ライドプールマッチング問題(RMP)はオンデマンド配車サービスの中心である。
既存のRMPソリューションの多くは、乗客が元の場所で拾い上げられ降ろされることを想定している。
本稿では,乗客の着脱範囲を拡大する新しいマッチング手法を提案する。
- 参考スコア(独自算出の注目度): 16.399294770099615
- License:
- Abstract: The Ride-Pool Matching Problem (RMP) is central to on-demand ride-pooling services, where vehicles must be matched with multiple requests while adhering to service constraints such as pickup delays, detour limits, and vehicle capacity. Most existing RMP solutions assume passengers are picked up and dropped off at their original locations, neglecting the potential for passengers to walk to nearby spots to meet vehicles. This assumption restricts the optimization potential in ride-pooling operations. In this paper, we propose a novel matching method that incorporates extended pickup and drop-off areas for passengers. We first design a tree-based approach to efficiently generate feasible matches between passengers and vehicles. Next, we optimize vehicle routes to cover all designated pickup and drop-off locations while minimizing total travel distance. Finally, we employ dynamic assignment strategies to achieve optimal matching outcomes. Experiments on city-scale taxi datasets demonstrate that our method improves the number of served requests by up to 13\% and average travel distance by up to 21\% compared to leading existing solutions, underscoring the potential of leveraging passenger mobility to significantly enhance ride-pooling service efficiency.
- Abstract(参考訳): ライドプールマッチング問題(RMP)は、オンデマンド配車サービスの中心であり、車両はピックアップ遅延、デトゥール制限、車両容量などのサービス制約に固執しながら、複数の要求にマッチしなければならない。
既存のRMPソリューションの多くは、乗客が元の場所で拾い上げられ降ろされることを想定しており、乗客が近くの場所まで歩いて車に会う可能性を無視している。
この仮定は、配車操作における最適化可能性を制限する。
本稿では,乗客の着脱範囲を拡大する新しいマッチング手法を提案する。
まず,車と乗用車の間で実現可能な一致を効率よく生成するための木に基づくアプローチを設計する。
次に、全走行距離を最小化しながら、指定されたピックアップ・アンド・ドロップオフのすべての場所をカバーするために、車両経路を最適化する。
最後に、最適なマッチング結果を達成するために動的代入戦略を用いる。
都市規模タクシーデータを用いた実験により,既存ソリューションと比較して最大13倍,平均走行距離を最大21倍に改善し,配車サービス効率を大幅に向上させる可能性を示した。
関連論文リスト
- GARLIC: GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [81.82487256783674]
GARLIC: GPT拡張強化学習のフレームワーク。
本稿では,GPT強化強化学習とインテリジェント制御のフレームワークであるGARLICについて紹介する。
論文 参考訳(メタデータ) (2024-08-19T08:23:38Z) - Mutual Information as Intrinsic Reward of Reinforcement Learning Agents
for On-demand Ride Pooling [19.247162142334076]
オンデマンドの車両プールサービスにより、各車両は一度に複数の乗客にサービスを提供することができる。
既存のアルゴリズムでは、収益のみを考慮する場合が多いため、異常な配信要求を抱える場合、乗車が困難になる。
本稿では,都市を個別の配車に分割した配車作業のための配車フレームワークを提案し,これらの地域での配車に強化学習(RL)アルゴリズムを用いる。
論文 参考訳(メタデータ) (2023-12-23T08:34:52Z) - Optimizing the Placement of Roadside LiDARs for Autonomous Driving [61.584278382844595]
道路沿いのLiDARの配置を最適化する方法は不可欠だが、見落とされがちな問題である。
本稿では,シーン内の最適化位置を選択することで,道路側LiDARの配置を最適化する手法を提案する。
Roadside-Optという名前のデータセットは、ロードサイドLiDAR配置問題の研究を容易にするために、CARLAシミュレータを使って作成されている。
論文 参考訳(メタデータ) (2023-10-11T07:24:27Z) - A Machine-Learned Ranking Algorithm for Dynamic and Personalised Car
Pooling Services [7.476901945542385]
カープールサービスのレコメンデーションシステムであるGoTogetherを提案する。
GoTogetherは、提案された試合の成功率を最大化するために、推奨乗車数のリストを構築している。
提案手法の性能をテストするために,Twitter や Foursquare の情報源から得られた実データを利用する。
論文 参考訳(メタデータ) (2023-07-06T09:25:38Z) - A greedy approach for increased vehicle utilization in ridesharing
networks [0.3480973072524161]
ライドシェアリングプラットフォームは 都市部の住民にとって 顕著な交通手段になっています
道路網全体からウィンドウへの探索空間を削減できるk-hopベースのスライディングウインドウ近似アルゴリズムを提案する。
実世界のデータセット上で提案したモデルを評価し,実験結果から提案モデルによる優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-02T07:25:01Z) - Efficiency, Fairness, and Stability in Non-Commercial Peer-to-Peer
Ridesharing [84.47891614815325]
本稿は、P2Pライドシェアリングにおける中核的な問題である、ライダーとドライバーのマッチングに焦点を当てる。
P2Pライドシェアリングにおける公平性と安定性の新たな概念を紹介する。
結果は、妥当な計算時間で、公平で安定した解が得られることを示唆している。
論文 参考訳(メタデータ) (2021-10-04T02:14:49Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
DiDi、Uber、Lyftなどの大型配車プラットフォームは、都市内の数万台の車両を1日中数百万の乗車要求に接続している。
両課題に対処するための統合価値に基づく動的学習フレームワーク(V1D3)を提案する。
論文 参考訳(メタデータ) (2021-05-18T19:22:24Z) - Vehicular Cooperative Perception Through Action Branching and Federated
Reinforcement Learning [101.64598586454571]
強化学習に基づく車両関連、リソースブロック(RB)割り当て、協調認識メッセージ(CPM)のコンテンツ選択を可能にする新しいフレームワークが提案されている。
車両全体のトレーニングプロセスをスピードアップするために、フェデレーションRLアプローチが導入されます。
その結果、フェデレーションRLはトレーニングプロセスを改善し、非フェデレーションアプローチと同じ時間内により良いポリシーを達成できることが示された。
論文 参考訳(メタデータ) (2020-12-07T02:09:15Z) - A Distributed Model-Free Ride-Sharing Approach for Joint Matching,
Pricing, and Dispatching using Deep Reinforcement Learning [32.0512015286512]
我々は、動的で需要に敏感で、価格に基づく車両通行者マッチングとルート計画フレームワークを提案する。
我々の枠組みはニューヨーク市税のデータセットを用いて検証されている。
実験の結果,実時間および大規模設定におけるアプローチの有効性が示された。
論文 参考訳(メタデータ) (2020-10-05T03:13:47Z) - FlexPool: A Distributed Model-Free Deep Reinforcement Learning Algorithm
for Joint Passengers & Goods Transportation [36.989179280016586]
本稿では,乗用車と貨物輸送を組み合わせることで,車両による輸送を改善することを検討する。
我々はFlexPoolを提案する。FlexPoolは分散モデルなしの深層強化学習アルゴリズムで、乗客や商品のワークロードを共同で処理する。
また,FlexPoolはフリート利用率を30%向上し,燃料効率を35%向上することを示した。
論文 参考訳(メタデータ) (2020-07-27T17:25:58Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
本稿では,ミリ波通信網における車とセルの関連性について検討する。
まず、ユーザ状態(VU)問題を離散的な非車両関連最適化問題として定式化する。
提案手法は,複数のベースライン設計と比較して,ユーザの複雑性とVUEの20%削減の合計で最大15%のゲインが得られる。
論文 参考訳(メタデータ) (2020-01-22T08:51:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。