論文の概要: Efficiency, Fairness, and Stability in Non-Commercial Peer-to-Peer
Ridesharing
- arxiv url: http://arxiv.org/abs/2110.01152v2
- Date: Mon, 19 Jun 2023 05:03:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 06:47:22.873827
- Title: Efficiency, Fairness, and Stability in Non-Commercial Peer-to-Peer
Ridesharing
- Title(参考訳): 非商業的ピアツーピアライドシェアリングの効率性、公正性、安定性
- Authors: Hoon Oh, Yanhan Tang, Zong Zhang, Alexandre Jacquillat, Fei Fang
- Abstract要約: 本稿は、P2Pライドシェアリングにおける中核的な問題である、ライダーとドライバーのマッチングに焦点を当てる。
P2Pライドシェアリングにおける公平性と安定性の新たな概念を紹介する。
結果は、妥当な計算時間で、公平で安定した解が得られることを示唆している。
- 参考スコア(独自算出の注目度): 84.47891614815325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unlike commercial ridesharing, non-commercial peer-to-peer (P2P) ridesharing
has been subject to limited research -- although it can promote viable
solutions in non-urban communities. This paper focuses on the core problem in
P2P ridesharing: the matching of riders and drivers. We elevate users'
preferences as a first-order concern and introduce novel notions of fairness
and stability in P2P ridesharing. We propose algorithms for efficient matching
while considering user-centric factors, including users' preferred departure
time, fairness, and stability. Results suggest that fair and stable solutions
can be obtained in reasonable computational times and can improve baseline
outcomes based on system-wide efficiency exclusively.
- Abstract(参考訳): 商業的ライドシェアリングとは異なり、非商業的ピアツーピア(p2p)ライドシェアリングは限定的な研究の対象となっている。
本稿は、P2Pライドシェアリングにおける中核的な問題である、ライダーとドライバーのマッチングに焦点を当てる。
我々は,P2Pライドシェアリングにおける利用者の嗜好を優先的に高め,公平性と安定性という新たな概念を導入する。
ユーザの好む出発時間,公平性,安定性など,ユーザ中心の要因を考慮した効率的なマッチングアルゴリズムを提案する。
その結果, 妥当かつ安定な解は妥当な計算時間で得られることが示唆され, システム全体の効率性に基づくベースライン結果の改善が期待できる。
関連論文リスト
- User Welfare Optimization in Recommender Systems with Competing Content Creators [65.25721571688369]
本研究では,コンテンツ制作者間での競争ゲーム環境下で,システム側ユーザ福祉の最適化を行う。
本稿では,推奨コンテンツの満足度に基づいて,各ユーザの重みの列を動的に計算する,プラットフォームのためのアルゴリズムソリューションを提案する。
これらの重みはレコメンデーションポリシーやポストレコメンデーション報酬を調整するメカニズムの設計に利用され、それによってクリエイターのコンテンツ制作戦略に影響を与える。
論文 参考訳(メタデータ) (2024-04-28T21:09:52Z) - Fairness-Enhancing Vehicle Rebalancing in the Ride-hailing System [7.531863938542706]
配車産業の急速な成長は、世界中の都市交通に革命をもたらした。
その利益にもかかわらず、保存されていない地域社会が手頃な価格の配車サービスへのアクセシビリティに制限されているため、株式の懸念が生じる。
本稿では,新しい車両再バランス手法により,アルゴリズムとライダーの公正性を両立することに焦点を当てる。
論文 参考訳(メタデータ) (2023-12-29T23:02:34Z) - Fair collaborative vehicle routing: A deep multi-agent reinforcement
learning approach [49.00137468773683]
協力的な車両ルーティングは、キャリアがそれぞれの輸送要求を共有し、互いに代表して輸送要求を実行することで協力するときに発生する。
従来のゲーム理論解の概念は、特性関数がエージェントの数とともに指数関数的にスケールするので、計算に費用がかかる。
我々は,この問題を,深層マルチエージェント強化学習を用いて解決した連立交渉ゲームとしてモデル化することを提案する。
論文 参考訳(メタデータ) (2023-10-26T15:42:29Z) - Coalitional Bargaining via Reinforcement Learning: An Application to
Collaborative Vehicle Routing [49.00137468773683]
コラボレーティブ・ビークル・ルーティング(Collaborative Vehicle Routing)とは、デリバリ情報を共有し、互いに代理してデリバリ要求を実行することで、デリバリ企業が協力する場所である。
これによりスケールの経済が達成され、コスト、温室効果ガスの排出、道路渋滞が減少する。
しかし、どの会社が誰とパートナーし、それぞれの会社がどれだけの報酬を支払うべきか?
シャプリー値(英語版)やヌクレオルス(英語版)のような伝統的なゲーム理論解の概念は、協調車両ルーティング(英語版)の現実問題に対して計算することが困難である。
論文 参考訳(メタデータ) (2023-10-26T15:04:23Z) - Using Simple Incentives to Improve Two-Sided Fairness in Ridesharing
Systems [27.34946988130242]
我々は、このILPの定式化の一環として、オンラインで実装できるシンプルなインセンティブに基づくフェアネススキームを提案する。
乗客グループとドライバーフェアネスの2つの異なるユースケースに対して、これらのフェアネスインセンティブをどのように定式化できるかを示す。
論文 参考訳(メタデータ) (2023-03-25T02:24:27Z) - Competition, Alignment, and Equilibria in Digital Marketplaces [97.03797129675951]
プラットフォームアクションがバンディットアルゴリズムであり,両プラットフォームがユーザ参加を競うデュオポリー市場について検討する。
私たちの主な発見は、この市場における競争は、市場の結果をユーザーユーティリティと完全に一致させるものではないということです。
論文 参考訳(メタデータ) (2022-08-30T17:43:58Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Trading the System Efficiency for the Income Equality of Drivers in
Rideshare [23.53645438932742]
ライダーの差別的キャンセルによる配車ドライバー間の所得格差を調査します。
事前に知られた流通に続いて、ライダーが順次到着すると想定されるオンライン二元マッチングモデルを提案する。
論文 参考訳(メタデータ) (2020-12-12T16:04:06Z) - A multi-objective optimization framework for on-line ridesharing systems [6.247570729758392]
本稿では,生物地理学に基づく最適化を利用して,オンラインライドシェアリングにおける多目的最適化問題を解くアルゴリズムを提案する。
北京のライドシェアリングデータセットで性能を評価することで,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-12-07T16:25:39Z) - Predicting Requests in Large-Scale Online P2P Ridesharing [1.8434430658837255]
ピアツーピアライドシェアリング(P2P-RS)は、プロのドライバーを介さずに、自分のプライベートカーでワンタイムの乗車を手配することを可能にする。
本稿では,P2P-RS最適化の文脈における配車要求の予測の利点を評価する問題に取り組む。
パブリックな実世界の結果は、完璧な予測器を使用することで、全体の報酬が5.27%向上し、予測の地平線は1分になることを示している。
論文 参考訳(メタデータ) (2020-09-07T10:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。