論文の概要: SuperCap: Multi-resolution Superpixel-based Image Captioning
- arxiv url: http://arxiv.org/abs/2503.08496v1
- Date: Tue, 11 Mar 2025 14:47:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:42:37.302522
- Title: SuperCap: Multi-resolution Superpixel-based Image Captioning
- Title(参考訳): SuperCap:マルチ解像度のスーパーピクセルベースの画像キャプチャ
- Authors: Henry Senior, Luca Rossi, Gregory Slabaugh, Shanxin Yuan,
- Abstract要約: 我々は,超画素と視覚言語モデル(VLM)を用いて,検出器ベースのキャプションと,大規模データセットにのみ事前学習した画像とのギャップを埋める。
我々のモデルはオブジェクトのような特徴を受け取り、一方VLMはオープンセットのオブジェクト理解を提供する。
われわれのモデルはCOCOカルパシーススプリットにおける競合CIDErスコアが136.9ドルに達する。
- 参考スコア(独自算出の注目度): 6.813036707969848
- License:
- Abstract: It has been a longstanding goal within image captioning to move beyond a dependence on object detection. We investigate using superpixels coupled with Vision Language Models (VLMs) to bridge the gap between detector-based captioning architectures and those that solely pretrain on large datasets. Our novel superpixel approach ensures that the model receives object-like features whilst the use of VLMs provides our model with open set object understanding. Furthermore, we extend our architecture to make use of multi-resolution inputs, allowing our model to view images in different levels of detail, and use an attention mechanism to determine which parts are most relevant to the caption. We demonstrate our model's performance with multiple VLMs and through a range of ablations detailing the impact of different architectural choices. Our full model achieves a competitive CIDEr score of $136.9$ on the COCO Karpathy split.
- Abstract(参考訳): これは画像キャプションにおける長年の目標であり、オブジェクト検出への依存を超えて進んでいる。
本稿では,視覚言語モデル(VLM)と組み合わせたスーパーピクセルを用いて,検出器ベースのキャプションアーキテクチャと,大規模データセットにのみ事前学習した画像とのギャップを埋める方法について検討する。
我々の新しいスーパーピクセルアプローチは、モデルがオブジェクトのような特徴を受け取っているのに対して、VLMはオープンセットのオブジェクト理解を提供する。
さらに,マルチレゾリューション・インプットを利用するようアーキテクチャを拡張し,異なるレベルのディテールで画像を見ることができるようにし,アテンション機構を用いてキャプションに最も関係のある部分を判断する。
我々は、複数のVLMでモデルの性能を実証し、異なるアーキテクチャ選択の影響を詳細に説明した。
われわれのフルモデルでは、COCOカルパシーススプリットで競合するCIDErスコアが136.9ドルに達している。
関連論文リスト
- RSUniVLM: A Unified Vision Language Model for Remote Sensing via Granularity-oriented Mixture of Experts [17.76606110070648]
複数の粒度にまたがる包括的視覚理解のための統一型エンドツーエンドRS VLMであるRSUniVLMを提案する。
RSUniVLMは、変更検出や変更キャプションのインスタンスを含む、マルチイメージ解析において効果的に機能する。
また、RSと一般ドメインの両方の既存のデータセットに基づいて、大規模なRS命令追従データセットを構築した。
論文 参考訳(メタデータ) (2024-12-07T15:11:21Z) - AdaptVision: Dynamic Input Scaling in MLLMs for Versatile Scene Understanding [96.01726275876548]
本稿では,様々な解像度の入力画像を動的に処理するマルチモーダルな大規模言語モデルAdaptVisionを提案する。
画像のサイズやアスペクト比に応じて視覚トークンの数を調整する動的画像分割モジュールを考案する。
私たちのモデルは、解像度1008倍の1008ドルまでの画像を処理できます。
論文 参考訳(メタデータ) (2024-08-30T03:16:49Z) - Img-Diff: Contrastive Data Synthesis for Multimodal Large Language Models [49.439311430360284]
コントラスト学習と画像差分キャプションにインスパイアされた新しいデータ合成手法を提案する。
私たちのキーとなるアイデアは、マッチングと異なる要素の両方を識別するためにモデルに挑戦することです。
我々は、この生成されたデータセットを利用して、最先端(SOTA)MLLMを微調整する。
論文 参考訳(メタデータ) (2024-08-08T17:10:16Z) - Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) は近年,高解像度自然画像からの高精度物体分割に向けて出現している。
既存の手法は、グローバルなローカライゼーションと局所的な洗練を徐々に完了させるために、退屈な複数のエンコーダ・デコーダストリームとステージに依存している。
これに触発されて、我々は多視点オブジェクト認識問題としてdisをモデル化し、擬似多視点アグリゲーションネットワーク(MVANet)を提供する。
一般的なdis-5Kデータセットの実験では、我々のMVANetは精度と速度の両方で最先端の手法を大きく上回っている。
論文 参考訳(メタデータ) (2024-04-11T03:00:00Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - Question Aware Vision Transformer for Multimodal Reasoning [14.188369270753347]
マルチモーダル推論のための質問認識型視覚変換器QA-ViTを提案する。
視覚エンコーダに直接質問認識を埋め込む。
この統合により、仮定された問題に関連性のある画像の側面に焦点を当てた動的視覚的特徴が得られる。
論文 参考訳(メタデータ) (2024-02-08T08:03:39Z) - SCA-PVNet: Self-and-Cross Attention Based Aggregation of Point Cloud and
Multi-View for 3D Object Retrieval [8.74845857766369]
大規模データセットを用いた多モード3Dオブジェクト検索はめったに行われない。
本稿では,3次元オブジェクト検索のための点群と多視点画像の自己・横断的アグリゲーションを提案する。
論文 参考訳(メタデータ) (2023-07-20T05:46:32Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
本稿では,ビデオオブジェクトのセグメンテーションを参照するためのSAMの可能性を探るRefSAMモデルを提案する。
提案手法は,Cross-RValModalを用いることで,モダリティ学習を向上させるためにオリジナルのSAMモデルに適応する。
我々は、言語と視覚の特徴を効果的に調整し、融合させるために、パラメータ効率のチューニング戦略を採用している。
論文 参考訳(メタデータ) (2023-07-03T13:21:58Z) - Referring Segmentation in Images and Videos with Cross-Modal
Self-Attention Network [27.792054915363106]
クロスモーダル・セルフアテンション(CMSA)モジュールは個々の単語や入力画像やビデオの詳細な情報を利用する。
ゲート型多層核融合(GMLF)モジュールは、自己注意型クロスモーダル機能を選択的に統合する。
クロスフレーム自己アテンション(CFSA)モジュールは、連続フレーム内の時間情報を効果的に統合する。
論文 参考訳(メタデータ) (2021-02-09T11:27:59Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
本稿では,マルチモーダルな入力源を効果的に統合し,時間的関連情報から質問に答えるビデオ質問応答モデルを提案する。
また,2レベルアテンション(単語・オブジェクト・フレームレベル),異なるソース(ビデオ・高密度キャプション)に対するマルチヘッド自己統合,ゲートへのより関連性の高い情報伝達などで構成されている。
当社のモデルは,各モデルコンポーネントが大きな利益をもたらす,難易度の高いTVQAデータセット上で評価され,全体的なモデルでは,最先端のモデルよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2020-05-13T16:35:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。