論文の概要: Question Aware Vision Transformer for Multimodal Reasoning
- arxiv url: http://arxiv.org/abs/2402.05472v1
- Date: Thu, 8 Feb 2024 08:03:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-09 16:08:01.408927
- Title: Question Aware Vision Transformer for Multimodal Reasoning
- Title(参考訳): マルチモーダル推論のための質問認識視覚トランスフォーマー
- Authors: Roy Ganz, Yair Kittenplon, Aviad Aberdam, Elad Ben Avraham, Oren
Nuriel, Shai Mazor, Ron Litman
- Abstract要約: マルチモーダル推論のための質問認識型視覚変換器QA-ViTを提案する。
視覚エンコーダに直接質問認識を埋め込む。
この統合により、仮定された問題に関連性のある画像の側面に焦点を当てた動的視覚的特徴が得られる。
- 参考スコア(独自算出の注目度): 14.188369270753347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-Language (VL) models have gained significant research focus, enabling
remarkable advances in multimodal reasoning. These architectures typically
comprise a vision encoder, a Large Language Model (LLM), and a projection
module that aligns visual features with the LLM's representation space. Despite
their success, a critical limitation persists: the vision encoding process
remains decoupled from user queries, often in the form of image-related
questions. Consequently, the resulting visual features may not be optimally
attuned to the query-specific elements of the image. To address this, we
introduce QA-ViT, a Question Aware Vision Transformer approach for multimodal
reasoning, which embeds question awareness directly within the vision encoder.
This integration results in dynamic visual features focusing on relevant image
aspects to the posed question. QA-ViT is model-agnostic and can be incorporated
efficiently into any VL architecture. Extensive experiments demonstrate the
effectiveness of applying our method to various multimodal architectures,
leading to consistent improvement across diverse tasks and showcasing its
potential for enhancing visual and scene-text understanding.
- Abstract(参考訳): VL(Vision-Language)モデルは、マルチモーダル推論において顕著な進歩を可能にする、重要な研究の焦点となっている。
これらのアーキテクチャは通常、視覚エンコーダ、Large Language Model (LLM)、およびLLMの表現空間と視覚的特徴を整列するプロジェクションモジュールから構成される。
ビジョンエンコーディングプロセスはユーザクエリとは分離され続けており、多くの場合、画像関連の質問という形式で行われます。
その結果、結果の視覚的特徴は、画像のクエリ固有の要素に最適に調整されない。
そこで本研究では,マルチモーダル推論のためのQA-ViT(QA-Aware Vision Transformer)アプローチを紹介し,視覚エンコーダに直接質問認識を組み込む。
この統合により、仮定された問題に関連性のある画像の側面に焦点を当てた動的視覚的特徴が得られる。
QA-ViTはモデルに依存しず、任意のVLアーキテクチャに効率的に組み込むことができる。
広範にわたる実験により,本手法を様々なマルチモーダルアーキテクチャに適用し,多様なタスクにわたって一貫した改善を実現し,視覚的・場面的理解を向上する可能性を示した。
関連論文リスト
- VipAct: Visual-Perception Enhancement via Specialized VLM Agent Collaboration and Tool-use [74.39058448757645]
視覚言語モデル(VLM)を強化するエージェントフレームワークであるVipActを提案する。
VipActは、タスク要求の分析、計画、調整を管理するオーケストレータエージェントと、特定のタスクを処理する専門エージェントで構成される。
様々な視覚認知タスクを特徴とするベンチマーク上でのVipActの評価を行い,実験結果から大幅な性能向上が得られた。
論文 参考訳(メタデータ) (2024-10-21T18:10:26Z) - MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model [49.931663904599205]
MaVEnは、マルチモーダル大言語モデル(MLLM)のマルチモーダル推論能力を高めるために設計された革新的なフレームワークである。
MaVEnは複雑なマルチイメージのシナリオにおけるMLLMの理解を著しく向上するとともに,単一イメージのコンテキストにおけるパフォーマンスも向上することを示す。
論文 参考訳(メタデータ) (2024-08-22T11:57:16Z) - Response Wide Shut: Surprising Observations in Basic Vision Language Model Capabilities [30.176918208200604]
VLM(Vision-Language Models)は、様々な複雑なコンピュータビジョン問題に対処するための汎用ツールとして登場した。
これらのモデルは高い能力を持つが、いくつかの基本的な視覚的理解スキルが欠けていることが示されている。
本稿では,基本的な視覚課題におけるSoTA VLMの限界を理解することを目的とする。
論文 参考訳(メタデータ) (2024-08-13T08:26:32Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
我々は、Draw-and-Understandプロジェクト、新しいモデル、マルチドメインデータセット、ビジュアルプロンプトのための挑戦的なベンチマークを紹介する。
具体的には、視覚エンコーダ、視覚プロンプトエンコーダ、LLMを接続する、エンド・ツー・エンドのマルチモーダル大規模言語モデル(MLLM)を提案する。
MLLMの視覚的プロンプト研究を進めるために,MDVP-DataとMDVP-Benchを紹介する。
論文 参考訳(メタデータ) (2024-03-29T16:26:20Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - MouSi: Poly-Visual-Expert Vision-Language Models [132.58949014605477]
本稿では,個々の視覚エンコーダの能力の相乗化にアンサンブルエキスパート技術を用いることを提案する。
この技術は、異なる視覚専門家の出力の処理を統一する融合ネットワークを導入する。
本実装では,SAMなどのモデルにおける位置占有率を,実質的な4096からより効率的で管理可能な64,さらには1。
論文 参考訳(メタデータ) (2024-01-30T18:09:11Z) - Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model [83.85856356798531]
VistaLLMは、粗くきめ細かな視覚言語タスクに対処する視覚システムである。
2値分割マスクをシーケンスとして表現するために、勾配対応の適応サンプリング技術を採用している。
また、新しいタスクであるAttCoSegを導入し、複数の入力画像に対してモデルの推論とグラウンド化能力を高める。
論文 参考訳(メタデータ) (2023-12-19T18:53:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。