Chemical reasoning in LLMs unlocks steerable synthesis planning and reaction mechanism elucidation
- URL: http://arxiv.org/abs/2503.08537v1
- Date: Tue, 11 Mar 2025 15:27:17 GMT
- Title: Chemical reasoning in LLMs unlocks steerable synthesis planning and reaction mechanism elucidation
- Authors: Andres M Bran, Theo A Neukomm, Daniel P Armstrong, Zlatko JonĨev, Philippe Schwaller,
- Abstract summary: Large language models (LLMs) can serve as powerful chemical reasoning engines when integrated with traditional search algorithms.<n>We demonstrate this paradigm through two fundamental challenges: strategy-aware retrosynthetic planning and mechanism elucidation.<n>Our approach establishes a new paradigm for computer-aided chemistry that combines the strategic understanding of LLMs with the precision of traditional chemical tools.
- Score: 0.3065062372337749
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: While machine learning algorithms have been shown to excel at specific chemical tasks, they have struggled to capture the strategic thinking that characterizes expert chemical reasoning, limiting their widespread adoption. Here we demonstrate that large language models (LLMs) can serve as powerful chemical reasoning engines when integrated with traditional search algorithms, enabling a new approach to computer-aided chemistry that mirrors human expert thinking. Rather than using LLMs to directly manipulate chemical structures, we leverage their ability to evaluate chemical strategies and guide search algorithms toward chemically meaningful solutions. We demonstrate this paradigm through two fundamental challenges: strategy-aware retrosynthetic planning and mechanism elucidation. In retrosynthetic planning, our method allows chemists to specify desired synthetic strategies in natural language to find routes that satisfy these constraints in vast searches. In mechanism elucidation, LLMs guide the search for plausible reaction mechanisms by combining chemical principles with systematic exploration. Our approach shows strong performance across diverse chemical tasks, with larger models demonstrating increasingly sophisticated chemical reasoning. Our approach establishes a new paradigm for computer-aided chemistry that combines the strategic understanding of LLMs with the precision of traditional chemical tools, opening possibilities for more intuitive and powerful chemical reasoning systems.
Related papers
- ChemDFM-R: An Chemical Reasoner LLM Enhanced with Atomized Chemical Knowledge [14.6026550444088]
This work focuses on the specific field of chemistry and develop a Chemical Reasoner LLM, ChemDFM-R.<n>We first construct a comprehensive dataset of atomized knowledge points to enhance the model's understanding of the fundamental principles and logical structure of chemistry.<n> Experiments on diverse chemical benchmarks demonstrate that ChemDFM-R achieves cutting-edge performance while providing interpretable, rationale-driven outputs.
arXiv Detail & Related papers (2025-07-29T16:40:49Z) - ChemActor: Enhancing Automated Extraction of Chemical Synthesis Actions with LLM-Generated Data [53.78763789036172]
We present ChemActor, a fully fine-tuned large language model (LLM) as a chemical executor to convert between unstructured experimental procedures and structured action sequences.<n>This framework integrates a data selection module that selects data based on distribution divergence, with a general-purpose LLM, to generate machine-executable actions from a single molecule input.<n>Experiments on reaction-to-description (R2D) and description-to-action (D2A) tasks demonstrate that ChemActor achieves state-of-the-art performance, outperforming the baseline model by 10%.
arXiv Detail & Related papers (2025-06-30T05:11:19Z) - Beyond Chemical QA: Evaluating LLM's Chemical Reasoning with Modular Chemical Operations [43.623140005091535]
We introduce ChemCoTBench, a reasoning framework that bridges molecular structure understanding with arithmetic-inspired operations.<n>ChemCoTBench formalizes chemical problem-solving into transparent, step-by-step reasoning.<n>We evaluate models on two high-impact tasks: Molecular Property Optimization and Chemical Reaction Prediction.
arXiv Detail & Related papers (2025-05-27T15:15:44Z) - LLM-Augmented Chemical Synthesis and Design Decision Programs [18.41721617026997]
We introduce an efficient scheme for encoding reaction pathways and present a new route-level search strategy.<n>We show that our LLM-augmented approach excels at retrosynthesis planning and extends naturally to the broader challenge of synthesizable molecular design.
arXiv Detail & Related papers (2025-05-11T15:43:00Z) - ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models [62.37850540570268]
Existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals.
ChemEval identifies 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks.
Results show that while general LLMs excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge.
arXiv Detail & Related papers (2024-09-21T02:50:43Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - Are large language models superhuman chemists? [4.87961182129702]
Large language models (LLMs) have gained widespread interest due to their ability to process human language and perform tasks on which they have not been explicitly trained.
Here, we introduce "ChemBench," an automated framework for evaluating the chemical knowledge and reasoning abilities of state-of-the-art LLMs.
We curated more than 2,700 question-answer pairs, evaluated leading open- and closed-source LLMs, and found that the best models outperformed the best human chemists.
arXiv Detail & Related papers (2024-04-01T20:56:25Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
We introduce an end-to-end AI agent framework capable of high-fidelity extraction from extensive chemical literature.
Our framework's efficacy is evaluated using accuracy, recall, and F1 score of reaction condition data.
arXiv Detail & Related papers (2024-02-20T13:21:46Z) - ChemLLM: A Chemical Large Language Model [49.308528569982805]
Large language models (LLMs) have made impressive progress in chemistry applications.
However, the community lacks an LLM specifically designed for chemistry.
Here, we introduce ChemLLM, a comprehensive framework that features the first LLM dedicated to chemistry.
arXiv Detail & Related papers (2024-02-10T01:11:59Z) - Structured Chemistry Reasoning with Large Language Models [70.13959639460015]
Large Language Models (LLMs) excel in diverse areas, yet struggle with complex scientific reasoning, especially in chemistry.
We introduce StructChem, a simple yet effective prompting strategy that offers the desired guidance and substantially boosts the LLMs' chemical reasoning capability.
Tests across four chemistry areas -- quantum chemistry, mechanics, physical chemistry, and kinetics -- StructChem substantially enhances GPT-4's performance, with up to 30% peak improvement.
arXiv Detail & Related papers (2023-11-16T08:20:36Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [57.70772230913099]
Chemist-X automates the reaction condition recommendation (RCR) task in chemical synthesis with retrieval-augmented generation (RAG) technology.
Chemist-X interrogates online molecular databases and distills critical data from the latest literature database.
Chemist-X considerably reduces chemists' workload and allows them to focus on more fundamental and creative problems.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - Advancing Drug Discovery with Enhanced Chemical Understanding via Asymmetric Contrastive Multimodal Learning [23.85388398199658]
We introduce Asymmetric Contrastive Multimodal Learning (ACML) to enhance molecular understanding and accelerate advancements in drug discovery.<n>ACML harnesses the power of effective asymmetric contrastive learning to seamlessly transfer information from various chemical modalities to molecular graph representations.<n>We demonstrate the effectiveness of this framework through large-scale cross-modality retrieval and isomer discrimination tasks.
arXiv Detail & Related papers (2023-11-11T01:58:45Z) - Monte Carlo Thought Search: Large Language Model Querying for Complex
Scientific Reasoning in Catalyst Design [42.3838742984173]
Large language models (LLM) have demonstrated novel capabilities for chemistry through complex instruction following capabilities and high quality reasoning.
We present a Monte Carlo Tree Search-based approach that improves beyond state-of-the-art chain-of-thought prompting variants to augment scientific reasoning.
arXiv Detail & Related papers (2023-10-22T21:29:33Z) - MechRetro is a chemical-mechanism-driven graph learning framework for
interpretable retrosynthesis prediction and pathway planning [10.364476820771607]
MechRetro is a graph learning framework for interpretable retrosynthetic prediction and pathway planning.
By integrating chemical knowledge as prior information, we design a novel Graph Transformer architecture.
We demonstrate that MechRetro outperforms the state-of-the-art approaches for retrosynthetic prediction with a large margin on large-scale benchmark datasets.
arXiv Detail & Related papers (2022-10-06T01:27:53Z) - Immersive Interactive Quantum Mechanics for Teaching and Learning
Chemistry [0.0]
We show how an immersive learning setting could be applied to help students understand the core concepts of typical chemical reactions.
Our setting relies on an interactive exploration and manipulation of a chemical system; this system is simulated in real-time with quantum chemical methods.
arXiv Detail & Related papers (2020-11-06T09:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.