Sparsity-Induced Global Matrix Autoregressive Model with Auxiliary Network Data
- URL: http://arxiv.org/abs/2503.08579v1
- Date: Tue, 11 Mar 2025 16:14:42 GMT
- Title: Sparsity-Induced Global Matrix Autoregressive Model with Auxiliary Network Data
- Authors: Sanyou Wu, Dan Yang, Yan Xu, Long Feng,
- Abstract summary: We propose an extension of the MAR model to study both international dependencies and the impact of the trade network on the global economy.<n>We provide theoretical and empirical analyses of the model's properties, alongside presenting intriguing economic insights.
- Score: 7.597659172360856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Jointly modeling and forecasting economic and financial variables across a large set of countries has long been a significant challenge. Two primary approaches have been utilized to address this issue: the vector autoregressive model with exogenous variables (VARX) and the matrix autoregression (MAR). The VARX model captures domestic dependencies, but treats variables exogenous to represent global factors driven by international trade. In contrast, the MAR model simultaneously considers variables from multiple countries but ignores the trade network. In this paper, we propose an extension of the MAR model that achieves these two aims at once, i.e., studying both international dependencies and the impact of the trade network on the global economy. Additionally, we introduce a sparse component to the model to differentiate between systematic and idiosyncratic cross-predictability. To estimate the model parameters, we propose both a likelihood estimation method and a bias-corrected alternating minimization version. We provide theoretical and empirical analyses of the model's properties, alongside presenting intriguing economic insights derived from our findings.
Related papers
- STORM: A Spatio-Temporal Factor Model Based on Dual Vector Quantized Variational Autoencoders for Financial Trading [55.02735046724146]
In financial trading, factor models are widely used to price assets and capture excess returns from mispricing.<n>We propose a Spatio-Temporal factOR Model based on dual vector quantized variational autoencoders, named STORM.<n>Storm extracts features of stocks from temporal and spatial perspectives, then fuses and aligns these features at the fine-grained and semantic level, and represents the factors as multi-dimensional embeddings.
arXiv Detail & Related papers (2024-12-12T17:15:49Z) - WHALE: Towards Generalizable and Scalable World Models for Embodied Decision-making [40.53824201182517]
This paper introduces WHALE, a framework for learning generalizable world models.
We present Whale-ST, a scalable spatial-temporal transformer-based world model with enhanced generalizability.
We also propose Whale-X, a 414M parameter world model trained on 970K trajectories from Open X-Embodiment datasets.
arXiv Detail & Related papers (2024-11-08T15:01:27Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
We show how to improve the fairness of Machine Learning models without altering the data or the learning algorithm.
We use a simple but key insight: the divergence of trends between different populations, and, consecutively, between a learned model and minority populations, is analogous to data drift.
We explore two strategies (model-splitting and reweighing) to resolve this drift, aiming to improve the overall conformance of models to the underlying data.
arXiv Detail & Related papers (2023-03-30T17:30:42Z) - Additive Covariance Matrix Models: Modelling Regional Electricity Net-Demand in Great Britain [0.0]
We forecast the joint distribution of net-demand across the 14 regions constituting Great Britain's electricity network.
Joint modelling is complicated by the fact that the net-demand variability within each region, and the dependencies between regions, vary with temporal, socio-economical and weather-related factors.
arXiv Detail & Related papers (2022-11-14T15:27:11Z) - Are Neural Topic Models Broken? [81.15470302729638]
We study the relationship between automated and human evaluation of topic models.
We find that neural topic models fare worse in both respects compared to an established classical method.
arXiv Detail & Related papers (2022-10-28T14:38:50Z) - Super-model ecosystem: A domain-adaptation perspective [101.76769818069072]
This paper attempts to establish the theoretical foundation for the emerging super-model paradigm via domain adaptation.
Super-model paradigms help reduce computational and data cost and carbon emission, which is critical to AI industry.
arXiv Detail & Related papers (2022-08-30T09:09:43Z) - Interpreting and predicting the economy flows: A time-varying parameter
global vector autoregressive integrated the machine learning model [0.0]
The paper proposes a time-varying parameter global vector autoregressive framework for predicting and analysing developed region economic variables.
We show the convincing in-sample of our proposed model in all economic variables and relatively high precision out-of-sample predictions with different-frequency economic inputs.
arXiv Detail & Related papers (2022-07-31T06:24:15Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Consistency-based Merging of Variability Models [62.997667081978825]
We introduce an approach to variability model integration that is based on the concepts of contextual modeling and conflict detection.
We present the underlying concepts and the results of a corresponding performance analysis.
arXiv Detail & Related papers (2021-02-15T16:28:42Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - An LSTM approach to Forecast Migration using Google Trends [7.621862131380908]
We replace the linear gravity model with a long short-term memory (LSTM) approach and compare it with two existing approaches.
Our LSTM approach combined with Google Trends data outperforms both these models on various metrics.
arXiv Detail & Related papers (2020-05-20T08:07:42Z) - An Epidemiological Modelling Approach for Covid19 via Data Assimilation [18.837659009007705]
The global pandemic of the 2019-nCov requires the evaluation of policy interventions to mitigate future social and economic costs of quarantine measures worldwide.
We propose an epidemiological model for forecasting and policy evaluation which incorporates new data in real-time through variational data assimilation.
arXiv Detail & Related papers (2020-04-25T12:46:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.