論文の概要: GarmentCrafter: Progressive Novel View Synthesis for Single-View 3D Garment Reconstruction and Editing
- arxiv url: http://arxiv.org/abs/2503.08678v1
- Date: Tue, 11 Mar 2025 17:56:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:44:51.750080
- Title: GarmentCrafter: Progressive Novel View Synthesis for Single-View 3D Garment Reconstruction and Editing
- Title(参考訳): GarmentCrafter: シングルビュー3Dガーメント再構成と編集のためのプログレッシブな新しいビュー合成
- Authors: Yuanhao Wang, Cheng Zhang, Gonçalo Frazão, Jinlong Yang, Alexandru-Eugen Ichim, Thabo Beeler, Fernando De la Torre,
- Abstract要約: GarmentCrafterは、プロでないユーザが、単一のビューイメージから3Dの衣服を作成、修正できる新しいアプローチである。
本手法は,最先端のワンビュー3D衣料復元法と比較して,視覚的忠実度と視間コヒーレンスに優れる。
- 参考スコア(独自算出の注目度): 85.67881477813592
- License:
- Abstract: We introduce GarmentCrafter, a new approach that enables non-professional users to create and modify 3D garments from a single-view image. While recent advances in image generation have facilitated 2D garment design, creating and editing 3D garments remains challenging for non-professional users. Existing methods for single-view 3D reconstruction often rely on pre-trained generative models to synthesize novel views conditioning on the reference image and camera pose, yet they lack cross-view consistency, failing to capture the internal relationships across different views. In this paper, we tackle this challenge through progressive depth prediction and image warping to approximate novel views. Subsequently, we train a multi-view diffusion model to complete occluded and unknown clothing regions, informed by the evolving camera pose. By jointly inferring RGB and depth, GarmentCrafter enforces inter-view coherence and reconstructs precise geometries and fine details. Extensive experiments demonstrate that our method achieves superior visual fidelity and inter-view coherence compared to state-of-the-art single-view 3D garment reconstruction methods.
- Abstract(参考訳): 我々はGarmentCrafterを紹介した。これはプロでないユーザがワンビュー画像から3D衣料を作成・修正できる新しいアプローチである。
画像生成の最近の進歩は2D衣料デザインを促進する一方で、プロでないユーザーにとっては3D衣料の制作と編集は依然として困難である。
シングルビュー3D再構成の既存の方法は、しばしば参照画像とカメラのポーズに条件付けされた新しいビューを合成するための事前訓練された生成モデルに依存している。
本稿では,この課題に対して,プログレッシブ・ディープ・予測とイメージ・ワープを用いて,新しい視点を近似する手法を提案する。
その後、進化するカメラのポーズによって、隠蔽された未知の衣服領域を完成させるために、多視点拡散モデルを訓練する。
RGBと深さを共同で推定することで、GarmentCrafterはビュー間のコヒーレンスを強制し、正確なジオメトリーと詳細を再構築する。
広汎な実験により,本手法は最先端のワンビュー3D衣料再構築法と比較して,視覚的忠実度と視間コヒーレンスに優れることを示した。
関連論文リスト
- EasyHOI: Unleashing the Power of Large Models for Reconstructing Hand-Object Interactions in the Wild [79.71523320368388]
本研究の目的は,手動物体のインタラクションを単一視点画像から再構築することである。
まず、手ポーズとオブジェクト形状を推定する新しいパイプラインを設計する。
最初の再構築では、事前に誘導された最適化方式を採用する。
論文 参考訳(メタデータ) (2024-11-21T16:33:35Z) - ViewCrafter: Taming Video Diffusion Models for High-fidelity Novel View Synthesis [63.169364481672915]
単一またはスパース画像からジェネリックシーンの高忠実な新規ビューを合成する新しい方法である textbfViewCrafter を提案する。
提案手法は,映像拡散モデルの強力な生成能力と,ポイントベース表現によって提供される粗い3D手がかりを利用して高品質な映像フレームを生成する。
論文 参考訳(メタデータ) (2024-09-03T16:53:19Z) - 3DFIRES: Few Image 3D REconstruction for Scenes with Hidden Surface [8.824340350342512]
3DFIRESは、ポーズ画像からシーンレベルの3D再構成を行う新しいシステムである。
単一視点再構成法の有効性を1つの入力で示す。
論文 参考訳(メタデータ) (2024-03-13T17:59:50Z) - iFusion: Inverting Diffusion for Pose-Free Reconstruction from Sparse
Views [61.707755434165335]
iFusionは、未知のカメラポーズを持つ2つのビューのみを必要とする、新しい3Dオブジェクト再構成フレームワークである。
我々は,様々な物体の形状や外観に関する暗黙の知識を組み込んだ,事前学習されたビュー合成拡散モデルを利用する。
ポーズ推定と新しいビュー合成の両方において、実験は強い性能を示す。
論文 参考訳(メタデータ) (2023-12-28T18:59:57Z) - Unifying Correspondence, Pose and NeRF for Pose-Free Novel View Synthesis from Stereo Pairs [57.492124844326206]
この研究は、3次元視覚における挑戦的で先駆的な課題であるステレオペアからのポーズレスノベルビュー合成の課題に踏み込んだ。
我々の革新的なフレームワークは、これまでとは違って、シームレスに2D対応マッチング、カメラポーズ推定、NeRFレンダリングを統合し、これらのタスクの相乗的強化を促進します。
論文 参考訳(メタデータ) (2023-12-12T13:22:44Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
フォトリアリスティック・ノベルビューを合成可能な高忠実度3次元生成対向ネットワーク(GAN)インバージョン・フレームワークを提案する。
提案手法は,1枚の画像から高忠実度3Dレンダリングを可能にし,AI生成3Dコンテンツの様々な応用に期待できる。
論文 参考訳(メタデータ) (2022-11-28T18:59:52Z) - Multi-person Implicit Reconstruction from a Single Image [37.6877421030774]
本稿では,1つの画像から複数の人物の詳細な空間的コヒーレントな再構築を実現するための新しいエンドツーエンド学習フレームワークを提案する。
既存のマルチパーソンメソッドは、モデルベースで、ゆるい服と髪の人々の正確な3dモデルをキャプチャできないことが多いという、2つの大きな欠点を抱えている。
論文 参考訳(メタデータ) (2021-04-19T13:21:55Z) - Multi-View Consistency Loss for Improved Single-Image 3D Reconstruction
of Clothed People [36.30755368202957]
本稿では,1枚の画像から3次元人物形状復元の精度を向上させるための新しい手法を提案する。
衣服、髪、体の大きさ、ポーズ、カメラの視点などによる形状の変化が大きいため、衣服の復元の正確さと完全性は限られている。
論文 参考訳(メタデータ) (2020-09-29T17:18:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。