論文の概要: Self-Taught Self-Correction for Small Language Models
- arxiv url: http://arxiv.org/abs/2503.08681v1
- Date: Tue, 11 Mar 2025 17:57:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:45:44.508950
- Title: Self-Taught Self-Correction for Small Language Models
- Title(参考訳): 小言語モデルのための自己学習自己補正
- Authors: Viktor Moskvoretskii, Chris Biemann, Irina Nikishina,
- Abstract要約: 本研究は,自己生成データのみを用いた反復的微調整により,小言語モデル(SLM)における自己補正を探索する。
複数のアルゴリズム設計選択を組み込んだ自己学習自己補正アルゴリズム(STaSC)を導入する。
質問応答タスクの実験結果から,STaSCは自己補正を効果的に学習し,性能が大幅に向上することが示された。
- 参考スコア(独自算出の注目度): 16.450874155791308
- License:
- Abstract: Although large language models (LLMs) have achieved remarkable performance across various tasks, they remain prone to errors. A key challenge is enabling them to self-correct. While prior research has relied on external tools or large proprietary models, this work explores self-correction in small language models (SLMs) through iterative fine-tuning using solely self-generated data. We introduce the Self-Taught Self-Correction (STaSC) algorithm, which incorporates multiple algorithmic design choices. Experimental results on a question-answering task demonstrate that STaSC effectively learns self-correction, leading to significant performance improvements. Our analysis further provides insights into the mechanisms of self-correction and the impact of different design choices on learning dynamics and overall performance. To support future research, we release our user-friendly codebase and lightweight models.
- Abstract(参考訳): 大規模言語モデル(LLM)は様々なタスクで顕著なパフォーマンスを達成しているが、エラーを起こしやすい。
重要な課題は、自己修正を可能にすることです。
従来の研究では、外部ツールや大規模なプロプライエタリモデルに依存していたが、この研究は、自己生成データのみを用いて反復的な微調整を通じて、小さな言語モデル(SLM)における自己補正を探求している。
複数のアルゴリズム設計選択を組み込んだ自己学習自己補正アルゴリズム(STaSC)を導入する。
質問応答タスクの実験結果から,STaSCは自己補正を効果的に学習し,性能が大幅に向上することが示された。
我々の分析は、自己補正のメカニズムと、異なる設計選択が学習力学と全体的なパフォーマンスに与える影響についての洞察を提供する。
今後の研究をサポートするため、ユーザフレンドリなコードベースと軽量モデルをリリースします。
関連論文リスト
- Iterative Deepening Sampling for Large Language Models [27.807695570974644]
効果的な自己補正と自己補正を実現するためのトレーニングモデルは、依然として重要な課題である。
自己補正の強化と高品質なサンプル生成を目的とした,新しい反復サンプリングアルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-08T04:39:51Z) - Mind the Gap: Examining the Self-Improvement Capabilities of Large Language Models [10.449015816015566]
自己改善は、Large Language Model(LLM)の事前トレーニング、ポストトレーニング、テストタイム推論におけるメカニズムである。
本稿では,自己改善のための数学的定式化について述べる。
また、自己改善がいつ可能か、反復的な自己改善手順、その性能改善方法についても検討する。
論文 参考訳(メタデータ) (2024-12-03T18:47:26Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
我々は、レンズを通して自己改善の能力について、新たな視点を提供する。
言語モデルは、正しい応答を生成する場合よりも、応答品質の検証が優れているという観察に感銘を受けて、後学習において、モデル自体を検証対象として、自己改善を形式化する。
SFTとRLHFに基づく自己改善アルゴリズムの2つの自然ファミリーを解析する。
論文 参考訳(メタデータ) (2024-12-02T20:24:17Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
本稿では、推論と批判モデルの役割を分離する2人プレイヤパラダイムを提案する。
まず、批判データを収集する自動化およびスケーラブルなフレームワークであるAutoMathCritiqueを提案する。
テスト時間における難解なクエリに対するアクターのパフォーマンスを,批判モデルが一貫して改善することが実証された。
論文 参考訳(メタデータ) (2024-11-25T17:11:54Z) - Self-Correction is More than Refinement: A Learning Framework for Visual and Language Reasoning Tasks [43.96835245022083]
モデルにアウトプットを洗練させる自己補正は、この問題に対する有望な解決策である。
本研究では,視覚言語モデルの推論および微調整段階における自己補正能力について検討した。
論文 参考訳(メタデータ) (2024-10-05T06:28:54Z) - Training Language Models to Self-Correct via Reinforcement Learning [98.35197671595343]
自己補正は、現代の大規模言語モデル(LLM)では、ほとんど効果がないことが判明した。
完全自己生成データを用いたLLMの自己補正能力を大幅に向上させるマルチターンオンライン強化学習手法であるSCoReを開発した。
SCoReは最先端の自己補正性能を実現し,MATHとHumanEvalでそれぞれ15.6%,9.1%向上した。
論文 参考訳(メタデータ) (2024-09-19T17:16:21Z) - Small Language Models Need Strong Verifiers to Self-Correct Reasoning [69.94251699982388]
大規模言語モデル(LLM)の推論性能を高めるための有望なソリューションとして自己補正が登場した。
この研究は、小さい(=13B)言語モデル(LM)が、より強いLMから最小の入力で推論タスクを自己補正できるかどうかを考察する。
論文 参考訳(メタデータ) (2024-04-26T03:41:28Z) - Fine-Tuning Enhances Existing Mechanisms: A Case Study on Entity
Tracking [53.66999416757543]
本研究では,微調整が言語モデルに実装された内部メカニズムに与える影響について検討する。
微調整はモデルの機械的操作を変えるのではなく、強化する。
論文 参考訳(メタデータ) (2024-02-22T18:59:24Z) - Teaching Language Models to Self-Improve through Interactive Demonstrations [83.9421355808174]
大規模言語モデルの自己改善能力は欠如しており、より小さなモデルで学ぶことは困難である。
このような自己改善能力を持つ小型モデルのトレーニングアルゴリズムであるTriPosTを導入する。
我々は,LLaMA-7bの算数および推論タスクの性能を最大7.13%向上させることができることを示す。
論文 参考訳(メタデータ) (2023-10-20T14:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。