Out-of-Distribution Segmentation in Autonomous Driving: Problems and State of the Art
- URL: http://arxiv.org/abs/2503.08695v2
- Date: Sat, 05 Apr 2025 02:11:26 GMT
- Title: Out-of-Distribution Segmentation in Autonomous Driving: Problems and State of the Art
- Authors: Youssef Shoeb, Azarm Nowzad, Hanno Gottschalk,
- Abstract summary: We review the state of the art in Out-of-Distribution (OoD) segmentation, with a focus on road obstacle detection in automated driving as a real-world application.<n>We analyse the performance of existing methods on two widely used benchmarks, SegmentMeIfYouCan Obstacle Track and LostAndFound-NoKnown.
- Score: 1.3654846342364308
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we review the state of the art in Out-of-Distribution (OoD) segmentation, with a focus on road obstacle detection in automated driving as a real-world application. We analyse the performance of existing methods on two widely used benchmarks, SegmentMeIfYouCan Obstacle Track and LostAndFound-NoKnown, highlighting their strengths, limitations, and real-world applicability. Additionally, we discuss key challenges and outline potential research directions to advance the field. Our goal is to provide researchers and practitioners with a comprehensive perspective on the current landscape of OoD segmentation and to foster further advancements toward safer and more reliable autonomous driving systems.
Related papers
- Segmenting Objectiveness and Task-awareness Unknown Region for Autonomous Driving [46.70405993442064]
We propose a novel framework termed Segmenting Objectiveness and Task-Awareness (SOTA) for autonomous driving scenes.
SOTA enhances the segmentation of objectiveness through a Semantic Fusion Block (SFB) and filters anomalies irrelevant to road navigation tasks.
arXiv Detail & Related papers (2025-04-27T10:08:54Z) - The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey [50.62538723793247]
Driving World Model (DWM) focuses on predicting scene evolution during the driving process.<n>DWM methods enable autonomous driving systems to better perceive, understand, and interact with dynamic driving environments.
arXiv Detail & Related papers (2025-02-14T18:43:15Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Evaluating Roadside Perception for Autonomous Vehicles: Insights from
Field Testing [7.755003755937953]
This paper introduces a comprehensive evaluation methodology specifically designed to assess the performance of roadside perception systems.
Our methodology encompasses measurement techniques, metric selection, and experimental trial design, all grounded in real-world field testing.
The findings of this study are poised to inform the development of industry-standard benchmarks and evaluation methods.
arXiv Detail & Related papers (2024-01-22T22:47:02Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.
To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - Social Interaction-Aware Dynamical Models and Decision Making for
Autonomous Vehicles [20.123965317836106]
Interaction-aware Autonomous Driving (IAAD) is a rapidly growing field of research.
It focuses on the development of autonomous vehicles that are capable of interacting safely and efficiently with human road users.
This is a challenging task, as it requires the autonomous vehicle to be able to understand and predict the behaviour of human road users.
arXiv Detail & Related papers (2023-10-29T03:43:50Z) - End-to-end Autonomous Driving: Challenges and Frontiers [45.391430626264764]
We provide a comprehensive analysis of more than 270 papers, covering the motivation, roadmap, methodology, challenges, and future trends in end-to-end autonomous driving.
We delve into several critical challenges, including multi-modality, interpretability, causal confusion, robustness, and world models, amongst others.
We discuss current advancements in foundation models and visual pre-training, as well as how to incorporate these techniques within the end-to-end driving framework.
arXiv Detail & Related papers (2023-06-29T14:17:24Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
We propose an unsupervised way to predict self-driving attention by uncertainty modeling and driving knowledge integration.
Results show equivalent or even more impressive performance compared to fully-supervised state-of-the-art approaches.
arXiv Detail & Related papers (2023-03-17T00:28:33Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - A Survey of End-to-End Driving: Architectures and Training Methods [0.9449650062296824]
We take a deeper look on the so called end-to-end approaches for autonomous driving, where the entire driving pipeline is replaced with a single neural network.
We review the learning methods, input and output modalities, network architectures and evaluation schemes in end-to-end driving literature.
We conclude the review with an architecture that combines the most promising elements of the end-to-end autonomous driving systems.
arXiv Detail & Related papers (2020-03-13T17:42:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.