論文の概要: Frequency selection for the diagnostic characterization of human brain tumours
- arxiv url: http://arxiv.org/abs/2503.08756v1
- Date: Tue, 11 Mar 2025 15:46:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:36:45.187313
- Title: Frequency selection for the diagnostic characterization of human brain tumours
- Title(参考訳): ヒト脳腫瘍の診断のための周波数選択
- Authors: Carlos Arizmendi, Alfredo Vellido, Enrique Romero,
- Abstract要約: 脳腫瘍の診断は非常に敏感で複雑な臨床課題である。
後者は腫瘍組織に関する多くの代謝情報を提供するが、その高次元性はパターン認識技術に頼りやすい。
- 参考スコア(独自算出の注目度): 0.08192907805418582
- License:
- Abstract: The diagnosis of brain tumours is an extremely sensitive and complex clinical task that must rely upon information gathered through non-invasive techniques. One such technique is magnetic resonance, in the modalities of imaging or spectroscopy. The latter provides plenty of metabolic information about the tumour tissue, but its high dimensionality makes resorting to pattern recognition techniques advisable. In this brief paper, an international database of brain tumours is analyzed resorting to an ad hoc spectral frequency selection procedure combined with nonlinear classification.
- Abstract(参考訳): 脳腫瘍の診断は、非常に敏感で複雑な臨床課題であり、非侵襲的手法によって収集された情報に依存しなければならない。
そのような技法の1つは磁気共鳴であり、画像や分光のモーダル性である。
後者は腫瘍組織に関する多くの代謝情報を提供するが、その高次元性はパターン認識技術に頼りやすい。
本稿では, 隣接スペクトル周波数選択法と非線形分類を組み合わせた脳腫瘍の国際データベースを解析した。
関連論文リスト
- A CNN Approach to Automated Detection and Classification of Brain Tumors [0.0]
本研究の目的は、提供されたMRIデータを分析して、健康な脳組織と脳腫瘍を分類することである。
モデル作成に使用されるデータセットは、3,264個の脳MRIスキャンを含む、一般にアクセス可能で検証された脳腫瘍分類(MRI)データベースである。
論文 参考訳(メタデータ) (2025-02-13T19:33:26Z) - Spatio-spectral classification of hyperspectral images for brain cancer
detection during surgical operations [0.0]
脳腫瘍の手術は神経外科において大きな問題である。
手術中の腫瘍境界の同定は困難である。
本研究では,ハイパースペクトル画像の空間特性とスペクトル特性を考慮した新しい分類法の開発について述べる。
論文 参考訳(メタデータ) (2024-02-11T12:58:42Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGliomaは人工知能に基づく診断スクリーニングシステムである。
ディープグリオーマは、世界保健機関が成人型びまん性グリオーマ分類を定義するために使用する分子変化を予測することができる。
論文 参考訳(メタデータ) (2023-03-23T18:50:18Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z) - MAG-Net: Mutli-task attention guided network for brain tumor
segmentation and classification [0.9176056742068814]
本稿では,MRI画像を用いて脳腫瘍領域の分類と分類を行うマルチタスク注意誘導エンコーダネットワーク(MAG-Net)を提案する。
このモデルは既存の最先端モデルと比較して有望な結果を得た。
論文 参考訳(メタデータ) (2021-07-26T16:51:00Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
超高分解能超音波局在顕微鏡は毛細血管レベルでの微小血管のイメージングを可能にする。
この作業では、これらの課題に対処するために、信号構造を効果的に活用するディープニューラルネットワークアーキテクチャを使用します。
トレーニングしたネットワークを利用することで,従来のPSF知識を必要とせず,UCAの分離性も必要とせず,短時間で微小血管構造を復元する。
論文 参考訳(メタデータ) (2021-07-12T09:04:20Z) - Experimenting with Knowledge Distillation techniques for performing
Brain Tumor Segmentation [0.0]
マルチモーダルMRI(Multi-modal magnetic resonance imaging)は、ヒト脳を解析するための重要な方法である。
重症度と検出の程度が異なるため、グリオーマを適切に診断することは、現代の医学において最も厄介で重要な分析課題の1つである。
私たちの主な焦点は、マルチモーダルMRIスキャンで脳腫瘍のセグメント化を行うために、さまざまなアプローチで作業することにあります。
論文 参考訳(メタデータ) (2021-05-24T18:17:01Z) - QuickTumorNet: Fast Automatic Multi-Class Segmentation of Brain Tumors [0.0]
3D MRIボリュームからの脳腫瘍の手動分割は、時間のかかる作業です。
私たちのモデルであるQuickTumorNetは、高速で信頼性があり、正確な脳腫瘍セグメンテーションを示しました。
論文 参考訳(メタデータ) (2020-12-22T23:16:43Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。