Automatic welding detection by an intelligent tool pipe inspection
- URL: http://arxiv.org/abs/2503.08757v1
- Date: Tue, 11 Mar 2025 15:52:28 GMT
- Title: Automatic welding detection by an intelligent tool pipe inspection
- Authors: C J Arizmendi, W L Garcia, M A Quintero,
- Abstract summary: This work provide a model based on machine learning techniques in welds recognition, based on signals obtained through in-line inspection tool called smart pig in Oil and Gas pipelines.<n>The results show that is possible to identify welding automatically with an efficiency between 90 and 98 percent.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work provide a model based on machine learning techniques in welds recognition, based on signals obtained through in-line inspection tool called smart pig in Oil and Gas pipelines . The model uses a signal noise reduction phase by means of preprocessing algorithms and attributeselection techniques. The noise reduction techniques were selected after a literature review and testing with survey data. Subsequently, the model was trained using recognition and classification algorithms, specifically artificial neural networks and support vector machines. Finally, the trained model was validated with different data sets and the performance was measured with cross validation and ROC analysis. The results show that is possible to identify welding automatically with an efficiency between 90 and 98 percent
Related papers
- A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.<n>We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.<n>By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - Comparison of Tiny Machine Learning Techniques for Embedded Acoustic Emission Analysis [6.402381955787955]
This paper compares machine learning approaches with different input data formats for the classification of acoustic emission (AE) signals.<n>AE signals are a promising monitoring technique in many structural health monitoring applications.
arXiv Detail & Related papers (2024-11-22T15:58:25Z) - Acoustic Signal Analysis with Deep Neural Network for Detecting Fault
Diagnosis in Industrial Machines [0.0]
In this study, a deep learning-based system was designed to analyze the sound signals produced by industrial machines.
The proposed method reached an accuracy rate varying between 97.17% and 99.87% at different Sound Noise Rate levels.
arXiv Detail & Related papers (2023-12-02T08:09:27Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Model2Detector:Widening the Information Bottleneck for
Out-of-Distribution Detection using a Handful of Gradient Steps [12.263417500077383]
Out-of-distribution detection is an important capability that has long eluded vanilla neural networks.
Recent advances in inference-time out-of-distribution detection help mitigate some of these problems.
We show how our method consistently outperforms the state-of-the-art in detection accuracy on popular image datasets.
arXiv Detail & Related papers (2022-02-22T23:03:40Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Classification of Spot-welded Joints in Laser Thermography Data using
Convolutional Neural Networks [52.661521064098416]
We propose an approach for quality inspection of spot weldings using images from laser thermography data.
We use convolutional neural networks to classify weld quality and compare the performance of different models against each other.
arXiv Detail & Related papers (2020-10-24T20:38:12Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z) - Detection Method Based on Automatic Visual Shape Clustering for
Pin-Missing Defect in Transmission Lines [1.602803566465659]
Bolts are the most numerous fasteners in transmission lines and are prone to losing their split pins.
How to realize the automatic pin-missing defect detection for bolts in transmission lines so as to achieve timely and efficient trouble shooting is a difficult problem.
In this paper, an automatic detection model called Automatic Visual Shape Clustering Network (AVSCNet) for pin-missing defect is constructed.
arXiv Detail & Related papers (2020-01-17T10:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.