Comparison of Tiny Machine Learning Techniques for Embedded Acoustic Emission Analysis
- URL: http://arxiv.org/abs/2411.17733v1
- Date: Fri, 22 Nov 2024 15:58:25 GMT
- Title: Comparison of Tiny Machine Learning Techniques for Embedded Acoustic Emission Analysis
- Authors: Uditha Muthumala, Yuxuan Zhang, Luciano Sebastian Martinez-Rau, Sebastian Bader,
- Abstract summary: This paper compares machine learning approaches with different input data formats for the classification of acoustic emission (AE) signals.
AE signals are a promising monitoring technique in many structural health monitoring applications.
- Score: 6.402381955787955
- License:
- Abstract: This paper compares machine learning approaches with different input data formats for the classification of acoustic emission (AE) signals. AE signals are a promising monitoring technique in many structural health monitoring applications. Machine learning has been demonstrated as an effective data analysis method, classifying different AE signals according to the damage mechanism they represent. These classifications can be performed based on the entire AE waveform or specific features that have been extracted from it. However, it is currently unknown which of these approaches is preferred. With the goal of model deployment on resource-constrained embedded Internet of Things (IoT) systems, this work evaluates and compares both approaches in terms of classification accuracy, memory requirement, processing time, and energy consumption. To accomplish this, features are extracted and carefully selected, neural network models are designed and optimized for each input data scenario, and the models are deployed on a low-power IoT node. The comparative analysis reveals that all models can achieve high classification accuracies of over 99\%, but that embedded feature extraction is computationally expensive. Consequently, models utilizing the raw AE signal as input have the fastest processing speed and thus the lowest energy consumption, which comes at the cost of a larger memory requirement.
Related papers
- CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
We introduce a Compact for Representations of Brain Oscillations using alternating attention (CEReBrO)
Our tokenization scheme represents EEG signals at a per-channel patch.
We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention.
arXiv Detail & Related papers (2025-01-18T21:44:38Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Multiple-Input Auto-Encoder Guided Feature Selection for IoT Intrusion Detection Systems [30.16714420093091]
This paper first introduces a novel neural network architecture called Multiple-Input Auto-Encoder (MIAE)
MIAE consists of multiple sub-encoders that can process inputs from different sources with different characteristics.
To distil and retain more relevant features but remove less important/redundant ones during the training process, we further design and embed a feature selection layer.
This layer learns the importance of features in the representation vector, facilitating the selection of informative features from the representation vector.
arXiv Detail & Related papers (2024-03-22T03:54:04Z) - On Designing Features for Condition Monitoring of Rotating Machines [7.830376406370754]
Various methods for designing input features have been proposed for fault recognition in rotating machines.
This article proposes a novel algorithm to design input features that unifies the feature extraction process for different time-series sensor data.
arXiv Detail & Related papers (2024-02-15T14:08:08Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data [0.0]
In this work, we demonstrate a novel anomaly detection system on induction motors used in pumps, compressors, fans, and other industrial machines.
We use a combination of pre-processing techniques and machine learning (ML) models with a low computational cost.
arXiv Detail & Related papers (2023-10-15T18:43:45Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
arXiv Detail & Related papers (2023-09-27T14:39:41Z) - Machine Learning Benchmarks for the Classification of Equivalent Circuit
Models from Electrochemical Impedance Spectra [0.0]
We showcase machine learning methods to classify the ECMs of 9,300 impedance spectra provided by QuantumScape for the BatteryDEV hackathon.
A key remaining challenge is the identifiability of the labels, underlined by the model performances and the comparison of misclassified spectra.
arXiv Detail & Related papers (2023-02-07T10:08:35Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Approximating the Hotelling Observer with Autoencoder-Learned Efficient
Channels for Binary Signal Detection Tasks [12.521662223741671]
The objective assessment of image quality (IQ) has been advocated for the analysis and optimization of medical imaging systems.
A novel method for learning channels using an autoencoder (AE) is presented.
AEs are a type of artificial neural network (ANN) that are frequently employed to learn concise representations of data to reduce dimensionality.
arXiv Detail & Related papers (2020-03-04T20:24:28Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.