A Tutorial on Knots and Quantum Mechanics
- URL: http://arxiv.org/abs/2503.08846v1
- Date: Tue, 11 Mar 2025 19:35:24 GMT
- Title: A Tutorial on Knots and Quantum Mechanics
- Authors: Dmitry Melnikov,
- Abstract summary: Notes review a description of quantum mechanics in terms of the topology of spaces.<n>A topological classification of entanglement is discussed, as well as properties of entanglement entropy and basic quantum protocols.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: These notes review a description of quantum mechanics in terms of the topology of spaces, basing on the axioms of Topological Quantum Field Theory and path integral formalism. In this description quantum states and operators are encoded by the topology of spaces that are used as modules to build the quantum mechanical model, while expectation values and probabilities are given by topological invariants of spaces, knots and links. The notes focus on the specific way the topology encodes quantum mechanical features, or, equivalently, on how these features can be controlled through the topology. A topological classification of entanglement is discussed, as well as properties of entanglement entropy and basic quantum protocols. The primary aim is to build a less conventional diagrammatic intuition about quantum mechanics, expanding the paradigm of ``Quantum Picturalism".
Related papers
- Quantum information elements in Quantum Gravity states and processes [0.0]
We discuss basic features of quantum gravity states and processes, common to a number of related quantum gravity formalisms.<n>We show how entanglement is a seed of topological and geometric properties, and how a pre-geometric, discrete notion of quantum causality can be implemented.
arXiv Detail & Related papers (2025-02-28T17:03:09Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Topological Quantum Gates in Homotopy Type Theory [0.0]
We explain how the specification of realistic topological quantum gates has a surprisingly slick formulation in parameterized point-set topology.
We propose that this confluence of concepts may jointly kickstart the development of topological quantum programming proper.
In a companion article, we will explain how further passage to "dependent linear" homotopy data types naturally extends this scheme to a full-blown quantum programming/certification language.
arXiv Detail & Related papers (2023-03-04T11:25:49Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - Geometric and holonomic quantum computation [1.4644151041375417]
Quantum gates based on geometric phases and quantum holonomies possess built-in resilience to certain kinds of errors.
This review provides an introduction to the topic as well as gives an overview of the theoretical and experimental progress for constructing geometric and holonomic quantum gates.
arXiv Detail & Related papers (2021-10-07T16:31:54Z) - Relating the topology of Dirac Hamiltonians to quantum geometry: When
the quantum metric dictates Chern numbers and winding numbers [0.0]
We establish relations between the quantum metric and the topological invariants of generic Dirac Hamiltonians.
We show that topological indices are bounded by the quantum volume determined by the quantum metric.
This work suggests unexplored topological responses and metrological applications in a broad class of quantum-engineered systems.
arXiv Detail & Related papers (2021-06-01T21:10:48Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Robust measurement of wave function topology on NISQ quantum computers [1.8523441396284195]
We present a strategy to measure topological invariants on quantum computers.
We show that our strategy can be easily integrated with the variational quantum eigensolver (VQE) so that the topological properties of generic quantum many-body states can be characterized on current quantum hardware.
arXiv Detail & Related papers (2021-01-18T19:01:38Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.