Robust measurement of wave function topology on NISQ quantum computers
- URL: http://arxiv.org/abs/2101.07283v6
- Date: Mon, 24 Apr 2023 13:25:43 GMT
- Title: Robust measurement of wave function topology on NISQ quantum computers
- Authors: Xiao Xiao, J. K. Freericks and A. F. Kemper
- Abstract summary: We present a strategy to measure topological invariants on quantum computers.
We show that our strategy can be easily integrated with the variational quantum eigensolver (VQE) so that the topological properties of generic quantum many-body states can be characterized on current quantum hardware.
- Score: 1.8523441396284195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topological quantum phases of quantum materials are defined through their
topological invariants. These topological invariants are quantities that
characterize the global geometrical properties of the quantum wave functions
and thus are immune to local noise. Here, we present a strategy to measure
topological invariants on quantum computers. We show that our strategy can be
easily integrated with the variational quantum eigensolver (VQE) so that the
topological properties of generic quantum many-body states can be characterized
on current quantum hardware. We demonstrate the robust nature of the method by
measuring topological invariants for both non-interacting and interacting
models, and map out interacting quantum phase diagrams on quantum simulators
and IBM quantum hardware.
Related papers
- Quantum channels, complex Stiefel manifolds, and optimization [45.9982965995401]
We establish a continuity relation between the topological space of quantum channels and the quotient of the complex Stiefel manifold.
The established relation can be applied to various quantum optimization problems.
arXiv Detail & Related papers (2024-08-19T09:15:54Z) - Quantum walks and entanglement in cavity networks [0.0]
We analyze the quantum properties of multipartite quantum systems, consisting of an arbitrarily large collection of optical cavities with two-level atoms.
We explore quantum walks in such systems and determine the resulting entanglement.
The topology of torus and the non-orientable M"obius strip serve as examples of complex networks we consider.
arXiv Detail & Related papers (2024-04-17T12:46:21Z) - Quantum computing topological invariants of two-dimensional quantum matter [0.0]
We present two quantum circuits for calculating Chern numbers of two-dimensional quantum matter on quantum computers.
First algorithm uses many qubits, and we analyze it using a tensor-network simulator of quantum circuits.
Second circuit uses fewer qubits, and we implement it experimentally on a quantum computer based on superconducting qubits.
arXiv Detail & Related papers (2024-04-09T06:22:50Z) - Direct Probe of Topology and Geometry of Quantum States on IBM Q [2.7801206308522417]
We show that a density matrix form of the quantum geometric tensor (QGT) can be explicitly re-constructed from Pauli operator measurements on a quantum circuit.
We propose two algorithms, suitable for IBM quantum computers, to directly probe QGT.
Explicit results obtained from IBM Q a Chern insulator model are presented and analysed.
arXiv Detail & Related papers (2024-03-21T09:18:16Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Variational Quantum Eigensolver for SU($N$) Fermions [0.0]
Variational quantum algorithms aim at harnessing the power of noisy intermediate-scale quantum computers.
We apply the variational quantum eigensolver to study the ground-state properties of $N$-component fermions.
Our approach lays out the basis for a current-based quantum simulator of many-body systems.
arXiv Detail & Related papers (2021-06-29T16:39:30Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Quantum Stochastic Walk Models for Quantum State Discrimination [6.85316573653194]
Quantum Walks (QSW) allow for a generalization of both quantum and classical random walks.
We consider the problem of quantum state discrimination on such a system, and we solve it by optimizing the network topology weights.
arXiv Detail & Related papers (2020-03-30T08:07:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.