A Dynamic Weighting Strategy to Mitigate Worker Node Failure in Distributed Deep Learning
- URL: http://arxiv.org/abs/2409.09242v1
- Date: Sat, 14 Sep 2024 00:46:51 GMT
- Title: A Dynamic Weighting Strategy to Mitigate Worker Node Failure in Distributed Deep Learning
- Authors: Yuesheng Xu, Arielle Carr,
- Abstract summary: This paper investigates various optimization techniques in distributed deep learning.
We propose a dynamic weighting strategy to mitigate the problem of straggler nodes due to failure.
- Score: 3.0468273116892752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing complexity of deep learning models and the demand for processing vast amounts of data make the utilization of large-scale distributed systems for efficient training essential. These systems, however, face significant challenges such as communication overhead, hardware limitations, and node failure. This paper investigates various optimization techniques in distributed deep learning, including Elastic Averaging SGD (EASGD) and the second-order method AdaHessian. We propose a dynamic weighting strategy to mitigate the problem of straggler nodes due to failure, enhancing the performance and efficiency of the overall training process. We conduct experiments with different numbers of workers and communication periods to demonstrate improved convergence rates and test performance using our strategy.
Related papers
- Adversarial Learning for Neural PDE Solvers with Sparse Data [4.226449585713182]
This study introduces a universal learning strategy for neural network PDEs, named Systematic Model Augmentation for Robust Training.
By focusing on challenging and improving the model's weaknesses, SMART reduces generalization error during training under data-scarce conditions.
arXiv Detail & Related papers (2024-09-04T04:18:25Z) - Contrastive-Adversarial and Diffusion: Exploring pre-training and fine-tuning strategies for sulcal identification [3.0398616939692777]
Techniques like adversarial learning, contrastive learning, diffusion denoising learning, and ordinary reconstruction learning have become standard.
The study aims to elucidate the advantages of pre-training techniques and fine-tuning strategies to enhance the learning process of neural networks.
arXiv Detail & Related papers (2024-05-29T15:44:51Z) - Overcoming Catastrophic Forgetting by Exemplar Selection in Task-oriented Dialogue System [34.1424535903384]
We aim to overcome the forgetting problem in intelligent task-oriented dialogue systems (ToDs)
We propose a method (HESIT) with hyper-gradient-based exemplar strategy, which samples influential exemplars for periodic retraining.
Experimental results show that HESIT effectively alleviates catastrophic forgetting by exemplar selection, and achieves state-of-the-art performance on the largest CL benchmark of ToDs.
arXiv Detail & Related papers (2024-05-16T10:54:46Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Dynamic Sparse Learning: A Novel Paradigm for Efficient Recommendation [20.851925464903804]
This paper introduces a novel learning paradigm, Dynamic Sparse Learning, tailored for recommendation models.
DSL innovatively trains a lightweight sparse model from scratch, periodically evaluating and dynamically adjusting each weight's significance.
Our experimental results underline DSL's effectiveness, significantly reducing training and inference costs while delivering comparable recommendation performance.
arXiv Detail & Related papers (2024-02-05T10:16:20Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
We employ transfer learning to improve training efficiency for large-scale spatial problems.
We propose that a convolutional neural network (CNN) can be trained on small windows of signals, but evaluated on arbitrarily large signals with little to no performance degradation.
arXiv Detail & Related papers (2023-06-14T01:24:42Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Hybrid Learning for Orchestrating Deep Learning Inference in Multi-user
Edge-cloud Networks [3.7630209350186807]
Collaborative end-edge-cloud computing for deep learning provides a range of performance and efficiency.
Deep Learning inference orchestration strategy employs reinforcement learning to find the optimal orchestration policy.
We demonstrate efficacy of our HL strategy through experimental comparison with state-of-the-art RL-based inference orchestration.
arXiv Detail & Related papers (2022-02-21T21:50:50Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.